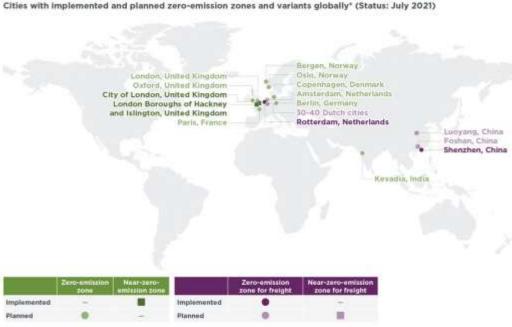
Zero Emission Infrastructure

Transitioning to a sustainable future requires innovative infrastructure that minimizes environmental impact. This includes renewable energy, clean transportation, smart buildings, and advanced carbon capture technologies - all working in harmony to create a zero-emission ecosystem.


BY- Sukhmandeep singh

CRN-2314077

Oxford, United Kingdor City of London, United Kingdom London Boroughs of Hackney d Islington, United Kingdom

teo (FCEVs) only: IN addition to BEVs and FCEVs, man-pero ad access to stup in hybrid electric vehicles (PHEVs). Zones for buight are defined in different ways, with affected vehicles ranging from urban delivery en- and heavy-duty trucks. Affected areas of pines range from a few streets to an entire city

Figure 1, Cities with implemented and planned ZEZs and variants globally as of July 2021

The Urgent Need for Sustainability

3

Mitigate Climate Change Reducing greenhouse gas emissions is crucial to curb

global warming and its

Improve Public Health

devastating consequences.

Zero-emission infrastructure reduces air and water pollution, benefiting human and ecological health.

Conserve Resources

Sustainable practices help preserve finite natural resources for future generations.

Renewable Energy Sources

Solar Power

Wind Power

Harnessing the sun's abundant energy through photovoltaic cells and concentrated solar thermal plants. Capturing the kinetic energy of wind using turbines to generate clean, emissions-free electricity.

Hydropower

Utilizing the gravitational force of flowing or falling water to spin turbines and produce power.

Electrification of Transportation

Electric Vehicles

Battery-powered cars, trucks, and buses that eliminate tailpipe emissions and reduce dependence on fossil fuels.

High-Speed Rail

2

3

Efficient electric rail networks that provide fast, sustainable transportation between cities and regions.

Micromobility

Electric bicycles, scooters, and other lightweight vehicles that enable emissions-free personal mobility.

Innovative Building Materials

Mass Timber

Engineered wood products that offer a low-carbon alternative to traditional steel and concrete construction.

Recycled Plastics

Repurposed plastic waste used to create durable building components with a reduced environmental footprint.

Self-Healing Concrete

Concrete mixes that can automatically repair cracks, extending the lifespan of infrastructure.

Aerogel Insulation

Ultralight, highly insulative materials that enhance energy efficiency in buildings.

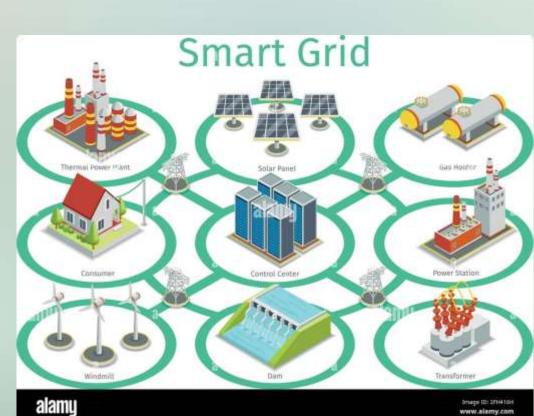
Smart Grid Technology

Renewable Integration

Seamless integration of solar, wind, and other clean energy sources into the grid.

Energy Storage

Advanced batteries and other storage solutions to balance supply and demand.


Demand Response

Real-time monitoring and management of energy usage to increase efficiency.

000 000 000

Grid Automation

Intelligent controls and sensors to optimize grid performance and reliability.

Carbon Capture and Sequestration

Capture

1

2

3

Technologies that extract and concentrate carbon dioxide from industrial emissions or the atmosphere.

Transport **Transport**

Pipelines or other methods that safely move the captured CO2 to storage sites.

Sequestration

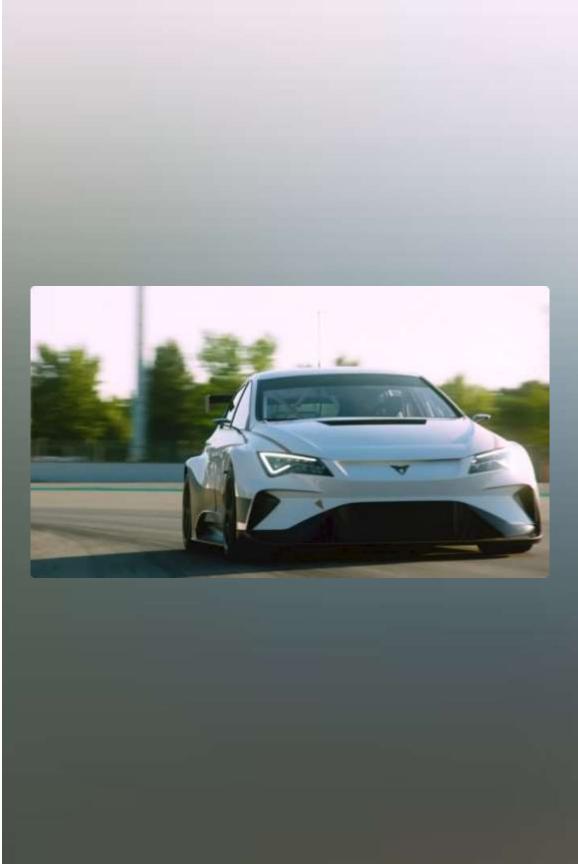
Permanent underground storage or utilization of the captured carbon to prevent release.

The Path to a Zero-Emission Future

Renewable Energy Transition

Phasing out fossil fuels in favor of clean, sustainable power generation.

Sustainable Infrastructure


2

3

Transforming buildings, transportation, and the grid to eliminate emissions.

Carbon Capture and Storage

Removing and sequestering atmospheric greenhouse gases to reach net-zero emissions.

1. European Commission. (2019). *The European Green Deal*. European Commission. https://ec.europa.eu/info/sites/info/files/european-green-deal-communication en.pdf

2. Intergovernmental Panel on Climate Change (IPCC). (2021). *Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge University Press. https://doi.org/10.1017/9781009157896

3. International Energy Agency. (2021). *Net Zero by 2050: A roadmap for the global energy sector*. IEA. https://www.iea.org/reports/net-zero-by-2050

4. United Nations Environment Programme. (2020). *Emissions gap report 2020*. UNEP. https://www.unep.org/emissions-gap-report-2020

5. Geels, F. W., Sovacool, B. K., Schwanen, T., & Sorrell, S. (2017). *The socio-technical dynamics of low-carbon transitions. *Joule, 1(3), 463-479. https://doi.org/10.1016/j.joule.2017.09.0186. Furlan, C., & Mortazavi, R. (2018). *Zeroemission infrastructure planning: Integrating renewable energy and transportation systems. *Energy Policy, 120, 447-45 6. https://doi.org/10.1016/j.enpol.2018.05.060

7. Pachauri, R. K., & Meyer, L. A. (Eds.). (2014). *Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. IPCC. https://doi.org/10.1017/CBO9781107415324

8. U.S. Department of Energy. (2021). *Pathways to a net-zero carbon future*. DOE. https://www.energy.gov/articles/pathways-net-zero-carbon-future

THANK YOU