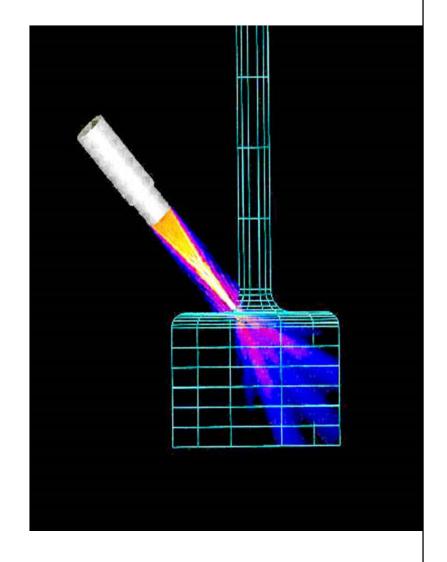
Introduction to Nondestructive Testing

Dr. S. RAVIRAJ

Professor of Civil Engineering
JSS Science and Technology Universit
S.J. College of Engineering
Mysuru – 570 006
ravirajs@sjce.ac.in



- Concrete Materials
- Quality of concrete
- Testing in Laboratory
- Non Destructive Testing
- Repair / Rehabilitation / Restoration

Introduction to NDT

Definition

The use of <u>noninvasive</u> techniques to determine the integrity of a material, component or structure or quantitatively measure some characteristic of an object.

i.e. Inspect or measure without doing harm.

- NDT methods more than 7 decades.
- Considerable developments have taken place.
- Considered as <u>powerful method</u> for <u>evaluating</u> concrete structures with respect to <u>strength</u>, <u>durability</u> and <u>quality</u> of hardened concrete.
- Can detect <u>crack depth</u>, <u>progressive</u> deterioration, <u>voids</u>, <u>location of reinforcement</u>, <u>cover concrete</u>, etc.

- NDT methods relatively <u>simple to perform</u>.
- But the <u>analysis</u> and <u>interpretation</u> of results are not so easy.
- In NDT some <u>properties</u> of concrete are <u>measured</u>. These are used to <u>estimate</u> the <u>strength</u>, <u>elastic behaviour</u> and <u>durability</u> of the material.

- Comprehensive <u>laboratory correlations</u> have to be established <u>between</u> '<u>strength parameters</u>' to be predicted and the '<u>results of in-situ NDT</u>'. This is to be done for the <u>field materials</u>.
- In addition to NDT, <u>Semi Destructive Testing</u> (SDT) are also performed.

Commonly adopted NDT methods

- Rebound Hammer Test
- Ultrasonic Pulse Velocity Test
- Rebar Locater Test (Cover meter test)
- Corrosion Analysis Test
- Resistivity Meter Test
- Impact Echo/Pulse Echo Test
- Ground Penetrating Radar Test

Commonly adopted **SDT** methods

- Concrete Core Test
- Capo Test
- Windsor Probe Test
- Load Test for Flexure Member
- Load Test for Piles

Commonly adopted **OTHER** methods

- Carbonation Test
- Chloride Determination Test
- Sulphate Determination Test
- Determination of pH

Rebound Hammer

Type N

Impact energy = 2.207 N-m (0.225 kg-m)

Ordinary building and bridge constructions.

Type NR

Impact energy = 2.207 N-m (0.225 kg-m)

Has a special recording device.

Type N Rebound Hammer -DIGI Schmidt

Type L

```
Impact energy = 0.735 N-m (0.075 kg-m)

Used for testing thin walled (< 100 mm) or small components and also cast stone components sensitive to impact.
```

Type LR

Impact energy = 0.735 N-m (0.075 kg-m)
Has a special recording device.

Type L and Type LR

Type LB

Impact energy = 0.735 N-m (0.075 kg-m)

For the continuous control of the quality of burnt clay material and tile products.

Type M

Impact energy = 29.43 N-m (3 kg-m)

For determining the strength of mass concrete and for testing the quality of concrete road pavements and airfield runways.

• Type P pendulum-type hammer Impact energy = 0.883 N-m (0.09 kg-m)

Type P pendulum-type hammer

Well suited for testing mortar joints of brick walls, plasterwork and surfacings.

For concrete of low strength (cube compressive strength 5 to 25 N/mm²) type P gives better results than the types N and L.

Rebound Hammer - Type N

Schmidt Hammer is designed specifically for the **Non Destructive Testing of in-situ** concrete structures.

Rebound Hammer – Type N

Specifications

Measuring Range: 10 to 70 N/mm²

Impact energy : 2.207 N-m

Case dimensions: 140 x 114 x 324 mm

Net Weight : 1.6 kg

Shipping Weight : 1.8 kg

• IS Code : IS 13311 (Part 2) – 1992

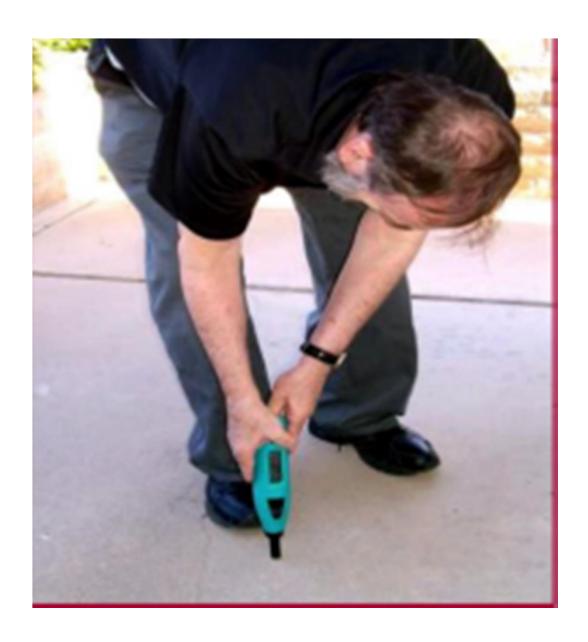
Rebound Hammer

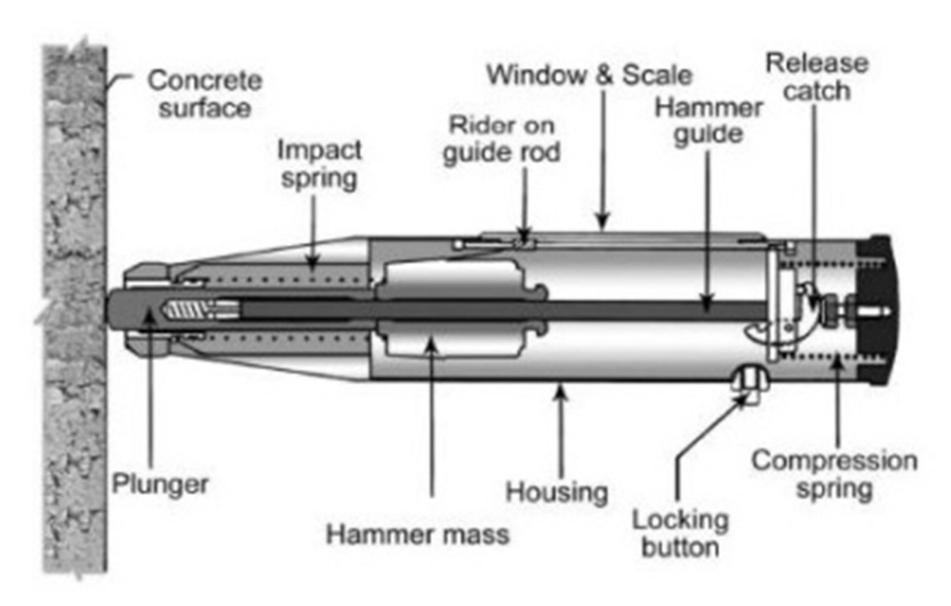
Testing Principle

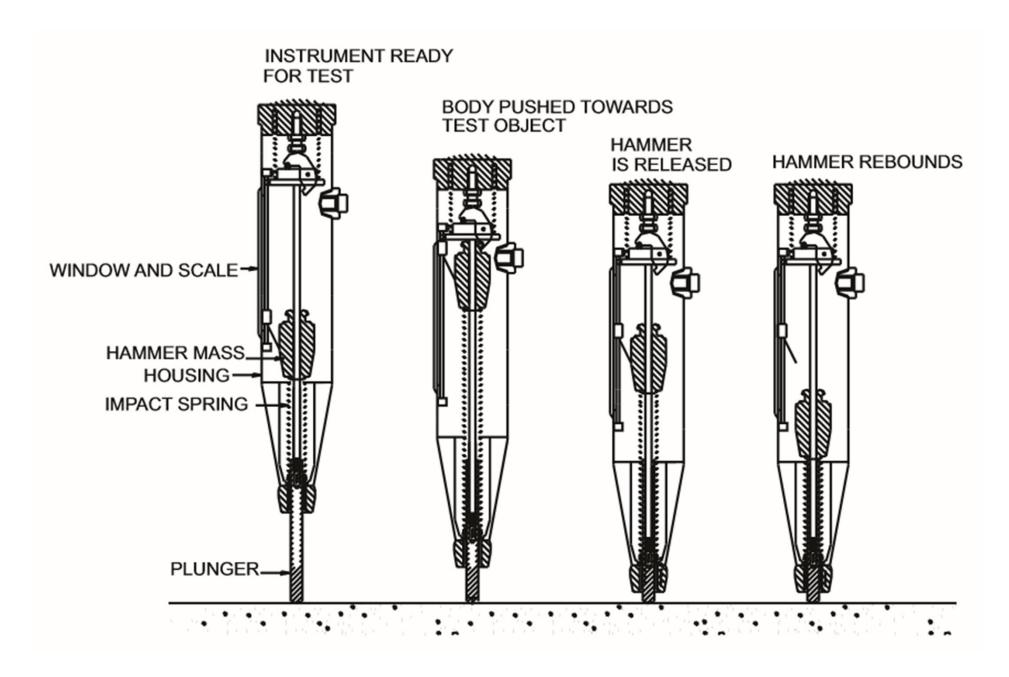
- Load device by pressing the tip of the impact plunger against a solid surface.
- Slide the plunger out the housing until it is fully extended.

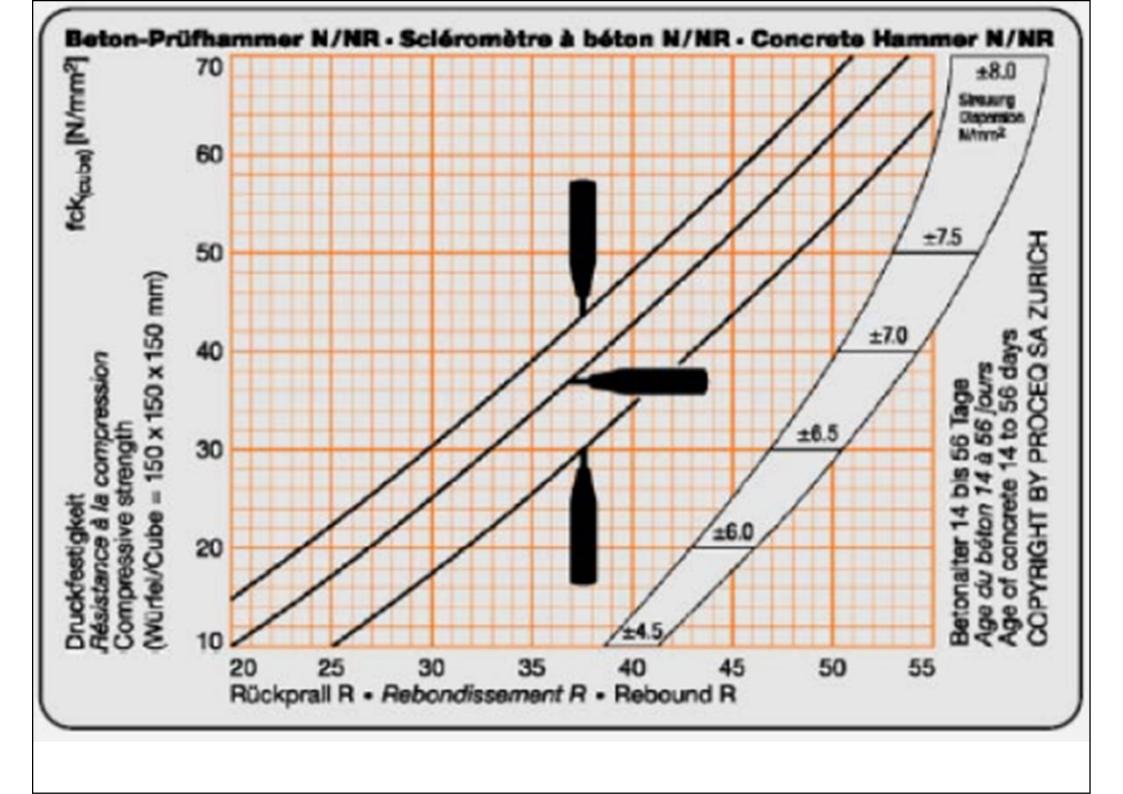
Testing Principle

is The plunger pressed against the surface to be tested which fires percussion weight against the rear of the plunger & rebounds.




Testing in Progress


Testing in Progress


Section of Rebound Hammer

Schematic diagram of operation of rebound hammer

Testing Principle

- The <u>maximum height</u> of <u>rebound</u> is <u>recorded</u> on a scale.
- This value is converted to a compression strength via conversion tables.

Rebound Hammer

Factors influencing test results

A. Mix characteristics

- 1. Cement type
- 2. Cement content
- 3. Coarse aggregate type

B. Member characteristics

- 1. Mass
- 2. Compaction
- 3. Surface type
- 4. Age, rate of hardening and curing type
- 5. Surface carbonation
- 6. Moisture condition
- 7. Stress state and temperature

Factors influencing test results ... Contd.

- Each of these <u>factors</u> will <u>affect</u> the <u>readings</u> obtained.
- Estimation of concrete strength will be valid only if they are all standardized for the concrete under test and for the calibration specimens.

Calibration Curve

 The <u>influences of the variables</u> described above are so <u>great</u> that it is very <u>unlikely</u> that <u>a general</u> <u>calibration curve</u> relating <u>rebound number</u> to <u>strength</u>, as provided by the equipment manufacturers, will be of any practical value.

Calibration ... Contd.

Strength <u>calibration</u> is based on

- the <u>particular mix</u> under investigation, and
- the <u>mould surface</u>, <u>curing</u> and <u>age</u> of <u>laboratory</u>
 specimens

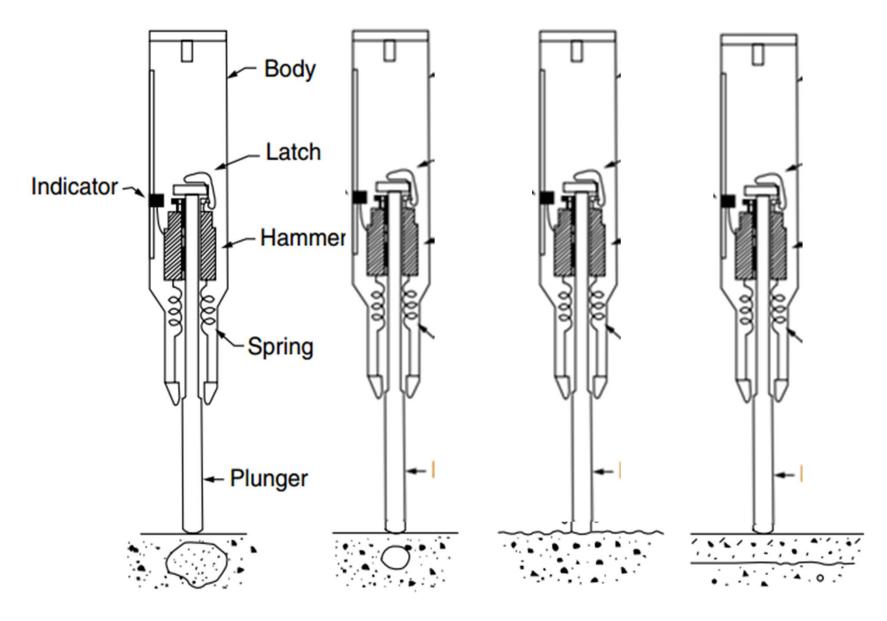
Unless these conditions correspond as closely as possible to the <u>in-place concrete</u>, the calibration curves cannot give the correct interpretation.

Calibration of Rebound Hammer

It is essential that <u>correct</u>
 <u>functioning</u> of the rebound
 hammer is <u>checked</u>
 regularly using a <u>standard</u>
 <u>steel anvil</u> of known mass.

• If the <u>rebound hammers</u> used for in-situ testing are <u>not regularly checked</u> against a standard anvil, the <u>reliability</u> of results <u>may suffer</u>.

Influence of moisture on strength


- It is well established that the <u>strength</u> of a <u>cube</u> <u>tested wet</u> is likely to be about <u>10% lower</u> than the strength of a corresponding <u>cube tested dry.</u>
- Since <u>rebound measurements</u> should be taken on a <u>dry surface</u>, it is recommended that <u>wet cured</u> <u>cubes</u> be <u>dried</u> in the laboratory <u>for 24 hours</u> before test.

Minimum readings and position

- When the total number of readings (n) taken at a location is > 10, the accuracy of the mean rebound number is likely to have a confidence of > 95%.
- The rebound numbers should <u>not be taken too</u> <u>close</u> to the <u>edge of the members</u>, i.e., they should be <u>atleast 20 mm</u> away <u>from the</u> boundary.

Location of testing

- The <u>test location</u> within the member is <u>important</u> when interpreting results.
- The <u>test yields information</u> about a <u>thin surface</u>
 <u>layer only.</u>
- <u>Voids</u> or <u>defects</u> present at <u>large depths</u> do not influence the test results.

Rebound values depend on the hardness of concrete surface

Gives only surface hardness

- Results are unrelated to the properties of the interior since the readings are taken on the surface.
- Results are not regarded as reliable on concrete more than three months old unless special steps are taken for allowance of age effects and surface carbonation.

Age of concrete

New concrete with moist surface generally has a relatively softer surface, resulting in lower than normal rebound.

In very old and dry concrete the surface will be harder than the interior, giving rebound values some what higher than normal (carbonation).

Carbonation of concrete surface

<u>Carbon dioxide</u>, which is present in the air at around 0.3 per cent by volume, <u>dissolves in water</u> to form a mildly acidic solution.

This forms within the pores of the concrete, and reacts with the <u>alkaline calcium hydroxide</u> forming <u>insoluble calcium carbonate</u>.

Carbonation of concrete surface

The pH value then drops from more than 12 to about 8.5.

It consumes alkalinity and reduces pore water pH to the 8–9 range.

Hence, steel remains no longer passive.

Carbonation of concrete surface

Surface carbonation of concrete significantly affect the rebound hammer test results.

In <u>old concrete</u> where the <u>carbonation layer</u> can be <u>upto 20 mm</u> thick, the strength may be overestimated by 50%.

Average rebound number & quality of concrete

Average Rebound Number	Quality of concrete
> 40	Very good hard layer
30 to 40	Good layer
20 to 30	Fair
< 20	Poor concrete
0	Delaminated

Applications and Limitations

- Checking the uniformity of concrete quality
- Comparing a given concrete with a specified requirement
- Approximate estimation of strength
- Abrasion resistance classification.

Ultrasonic Pulse Velocity (UPV)

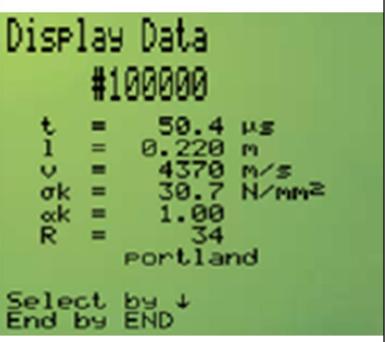
- The <u>first reports</u> of the <u>measurement of the</u>
 velocity of mechanically generated <u>pulses</u>
 through <u>concrete</u> appeared in the USA in the mid
 1940s.
- <u>Velocity depends</u> primarily upon the <u>elastic</u>
 <u>properties</u> of the material and is almost <u>independent of geometry</u>.

- The <u>potential value</u> of this approach was apparent, but <u>measurement problems</u> were considerable.
- In <u>France</u>, a few years later this led to the <u>development of repetitive mechanical pulse</u> equipment.

 At about the same time work was undertaken in Canada and the United Kingdom using electroacoustic transducers, which were found to offer greater control on the type and frequency of pulses generated.

 This form of testing developed into the modern ultrasonic method, employing pulses in the frequency range of 20–150 kHz which are generated and recorded by electronic circuits.


- Concrete testing is thus at present <u>based</u> largely on <u>pulse velocity measurements</u> using <u>through-</u> <u>transmission techniques</u>.
- The method has become <u>widely accepted</u> around the <u>world</u>.
- Commercially produced <u>robust lightweight</u>
 <u>equipment</u> are suitable for <u>site</u> as well as laboratory use.


Earlier Equipment

Recent Equipment

Specifications of UPV

Memory: Nonvolatile, up to 250 measured values

Display: 128 x 128 pixel LCD graphic

Measuring Range: Approx. 15 to 6550 µs

Resolution: 0.1 µs

Voltage Pulse: 1 kV

Pulse Rate: 3/s

Impedance at Input: 1 MΩ

Transducers: 54 kHz with 5 ft. (1.5 m) BNC cables, two included

Temperature Range: -0° to +60° C

Battery Operation: 30 hours with 6 AA (LR 6) batteries, 1.5 V

Case Dimensions: 325 x 295 x 105 mm (12.8" x 11.6" x 4.15")

Weight: Net 3 kg (6.6 lbs.); Shpg. 5.4 kg (12 lbs.)

Equipment

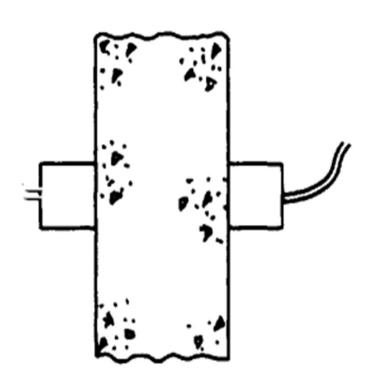
- Consisting of a <u>pulse generator</u> and a <u>pulse</u> receiver.
- Pulses are generated by shock-exciting piezoelectric crystals, with similar crystals used in the receiver.
- The equipment is robust and is provided with a carrying case for site use.

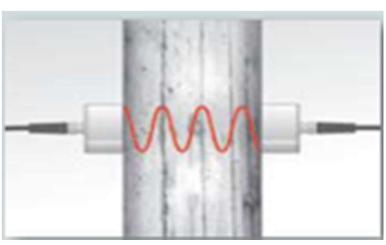
Equipment

- The <u>time taken</u> for the pulse to pass through the concrete <u>is measured</u> by electronic measuring circuits.
- The <u>display</u> is a four-digit liquid crystal and gives a <u>direct transit time</u> reading in microseconds.
- The measuring equipments are <u>accurate</u> to <u>± 0.1</u> microseconds.

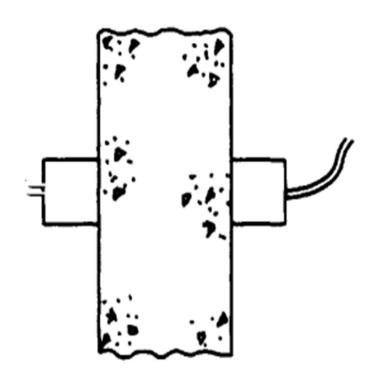
Ultrasonic Pulse Velocity (UPV)

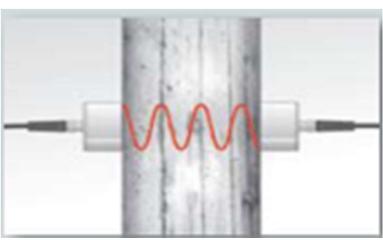
- If the method is properly used, a <u>considerable</u> <u>information</u> about the <u>interior of a concrete</u> member can be obtained.
- Since the <u>range of pulse velocities</u> relating to practical concrete qualities is <u>relatively small</u> (3.0–4.8 km/s), <u>great care</u> is necessary, especially for site usage.

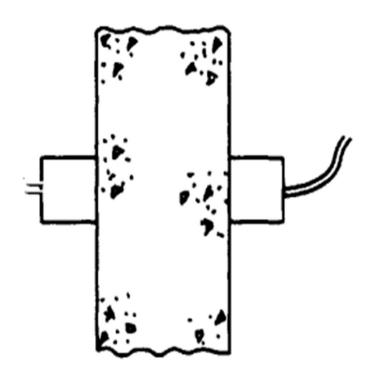

Transducer arrangement

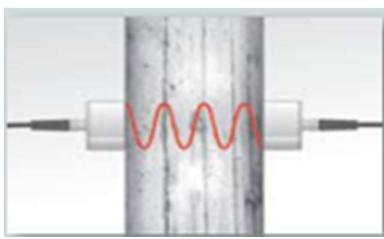

Three basic ways in which the transducers may be arranged:

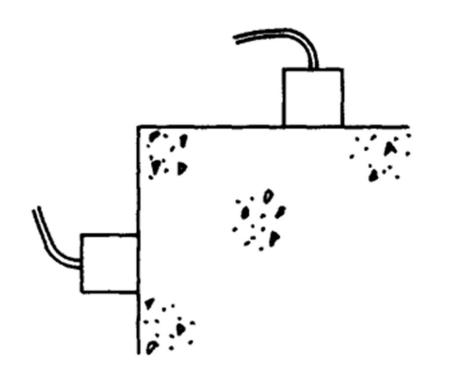
- Opposite faces (direct transmission)
- Adjacent faces (semi-direct transmission)
- Same face (indirect transmission)

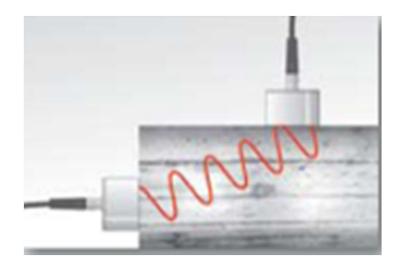

The <u>type of pulse waves</u> received by the transducer changes in each of these cases






- Longitudinal waves with particle displacement in the direction of travel (also known as compression waves)
- Most important since these are the <u>fastest</u> and generally <u>provide</u> more useful information.

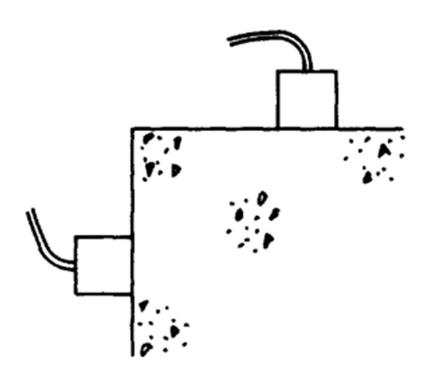

- The <u>maximum pulse energy</u>
 is <u>transmitted</u> at <u>right</u>
 angles to the <u>face</u> of the
 transmitter.
- This is the <u>most reliable</u>
 from the point of view of
 transit time measurement

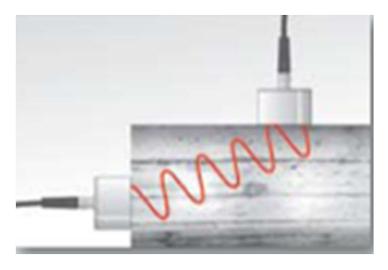


- The <u>path is clearly</u>
 <u>defined</u> and can be
 <u>measured accurately</u>.
- This <u>approach</u> should be <u>used wherever possible</u>
 for assessing concrete quality.

Adjacent faces (semi-direct transmission)

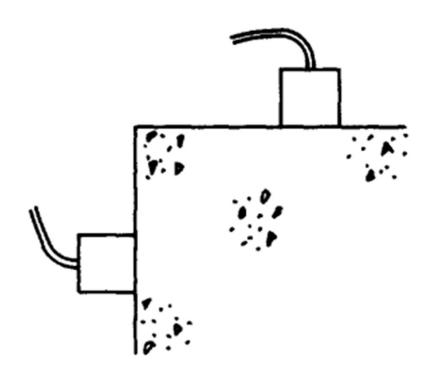
Shear or transverse

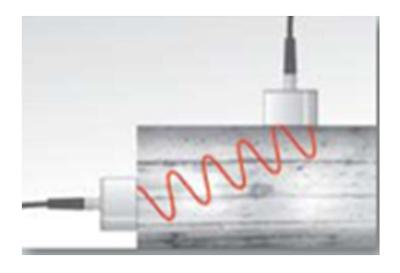

waves with particle

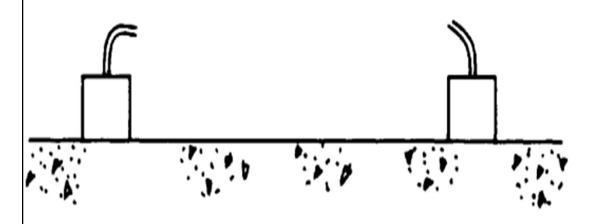

displacement at right

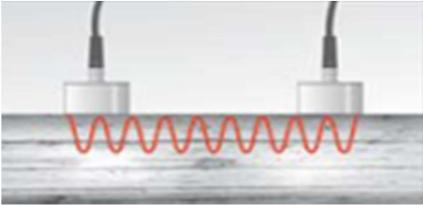
angles to the direction of

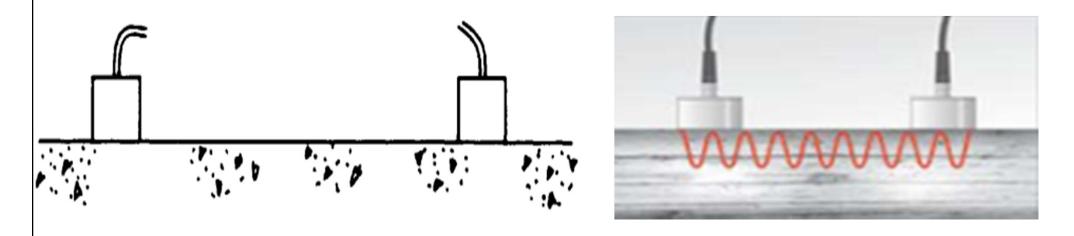
travel are less faster.

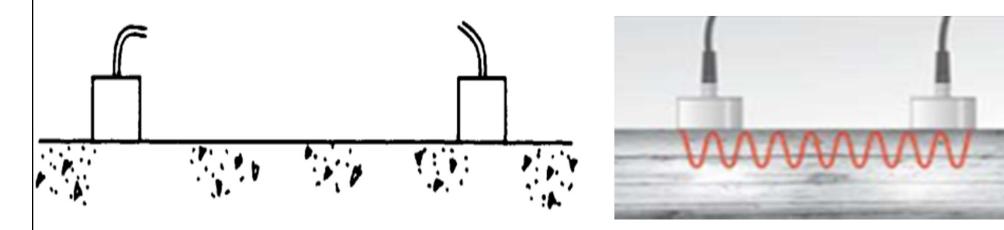

Adjacent faces (semi-direct transmission)




 Can be used sometimes satisfactorily if the angle between the transducers is not too great, and if the path length is not too large.


Adjacent faces (semi-direct transmission)


- The sensitivity will be smaller.
- The path length is
 generally regarded as
 distance from centre to
 centre of transducer
 faces.



Surface waves having an elliptical particle displacement are the slowest.

• The indirect method is definitely the <u>least</u> satisfactory, since the <u>received signal</u> amplitude may be less than 3% of that for a comparable direct transmission.

- The <u>pulse velocity</u> will be predominantly <u>influenced</u> by the <u>surface zone concrete</u>, which may <u>not</u> be <u>representative</u> of the <u>body</u>
- The exact path length is uncertain.

Pulse velocity tests can be <u>carried out</u> on both <u>laboratory-sized specimens</u> and <u>completed</u> <u>concrete structures</u>.

Factors affecting measurement:

 There must be <u>smooth contact</u> with the surface under test; a <u>coupling medium</u> such as thin film of oil, petroleum jelly, liquid soap or grease is mandatory.

- It is desirable for <u>path lengths</u> to be <u>at least</u> 300 mm in order to avoid any errors introduced by heterogeneity.
- There is an <u>increase</u> in pulse velocity at <u>below-freezing</u> temperature owing to freezing of water;
 from <u>5 to 30° C</u> pulse velocities are <u>not temperature dependent</u>.

 The presence of reinforcing steel in concrete has an appreciable effect on pulse velocity. It is therefore desirable and often mandatory to choose pulse paths that avoid the influence of reinforcing steel or to make corrections if steel is in the pulse path.

Velocity criterion for concrete quality grading (IS 1311 - Part 1)

SI.	Pulse velocity in cross	Concrete
No.	probing (km/sec)	quality grading
1	Above 4.5	Excellent
2	3.5 to 4.5	Good
3	3.0 to 3.5	Medium
4	Below 3.0	Doubtful

- UPV method is an ideal tool for establishing uniformity of concrete.
- Large differences in pulse velocity is indicative of defects or deterioration in concrete.
- High pulse velocity readings are generally indicative of good quality concrete.

Why UPV?

- Evaluating the uniformity within a member
- Locating internal voids and cracks
- Estimating severity of deterioration
- Estimating depth of fire damage
- Evaluating effectiveness of crack repairs
- Identifying anamalous regions in drilled cores
- Estimate early-age strength (with correlation)

REBAR LOCATER

REBAR LOCATER

 This meter, with its integral sensor can be held in one hand, and provides the unique ability to indicate the position of reinforcing bars.

REBAR LOCATER

- The Rebar Locator features probes that allows one to measure shallow and deep ranges.
- This instrument can locate the size and orientation of bar, as well as indicate concrete cover.
- Generally <u>used along</u> with <u>UPV</u> and <u>Core cutting</u> equipment.

REBAR LOCATER- Equipment

Range : Shallow - up to 100mm

Deep - up to 185mm

Accuracy: Better than ± 2mm or

±5% for cover

Bar Sizing: 8-40mm better than

± 1 bar size

Display : LCD with backlight

REBAR LOCATER- Equipment

• **Memory** : 1,60,000 objects

Data Output : RS232 or USB adapter

• Power Supply: 1.5V (6 nos.), 45 hr operation;

30 hr with backlight

• Dimensions : 415 x 500 x 125mm

• Weight : 4.2kg

CORROSION ANALYSIS INSTRUMENT

CORROSION ANALYSIS INSTRUMENT

- The CANIN+ Corrosion Analyzing Instrument <u>highlights corrosion activity</u>
 before rust becomes visible.
- Early detection is a key factor in preventing an unanticipated structural failure.

Equipment

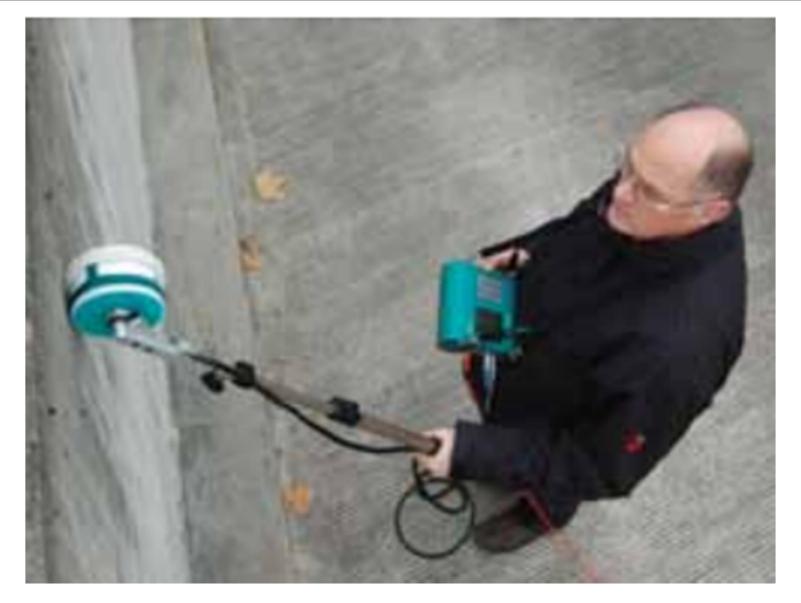
- Battery operation six LR 6 (AA) batteries, 1.5 V
 for up to 60 h (or 30 h with activated backlight)
- Display 128 x 128 pixel graphic LCD with backlight
- Case dimensions: 580 x 480 x 210 mm
- Net weight : 10.6 kg
- Shipping weight : 14 kg

The Canin+ corrosion analyzing instrument

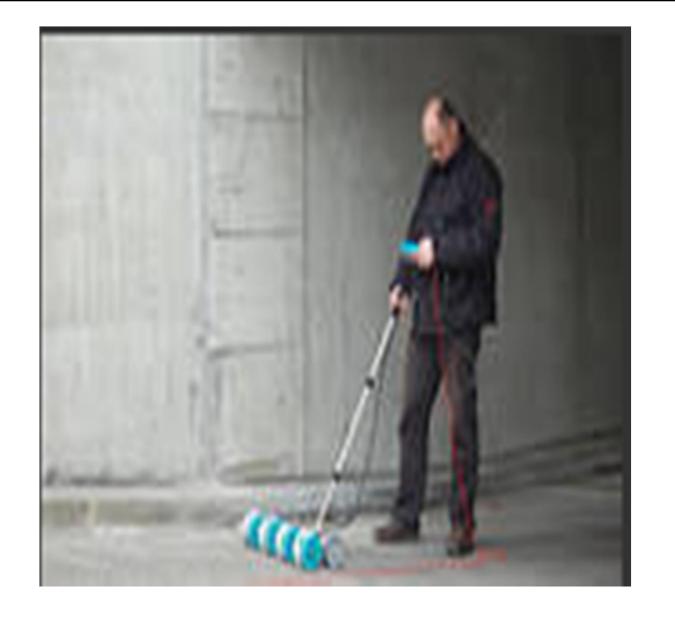
- Half-cell corrosion potential method Accurate <u>field potential measurements</u> aid in <u>detecting</u> active <u>corrosion in rebars</u>.
- The <u>test surface</u> is <u>divided into grids</u> of uniform size.

The Canin+ corrosion analyzing instrument

- The <u>voltage is recorded</u> at points in the <u>centre of these grids</u>.
- If the voltage recorded is more than -200 mv it indicates that the reinforcements are already corroded.


The Canin+ corrosion analyzing instrument

 In order to satisfy individual testing needs, the Canin+ is available individually with a rod electrode, wheel electrode and/or Wenner probe configurations or as a complete system with all components.


Rod Electrode

The copper sulphate electrode for corrosion analysis is ideal for localized measurements. **Best for measuring** surface areas below 20m² (200 sq. ft)

One-Wheel Electrode allows for fast scanning of larger surfaces. Best for corrosion analysis of horizontal areas up to 100m²(1,000 sq. ft.) plus vertical and soffit areas

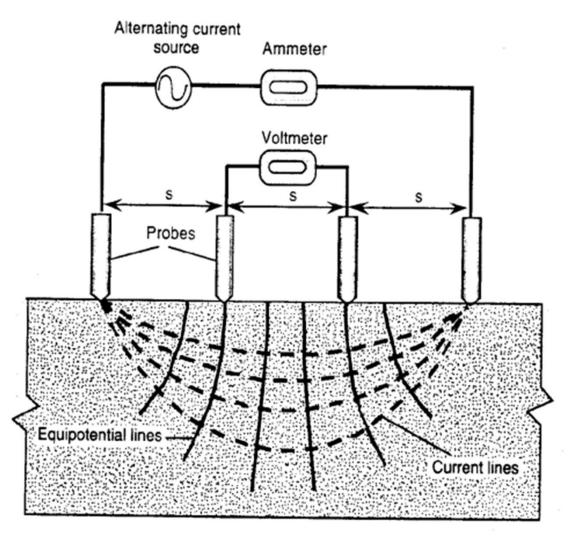
The 4-wheel Electrode - Provides the fastest measurement. Best for measuring large horizontal areas over 100m²(1,000 sq. ft.)

Features

- Immediate <u>presentation</u> of <u>test area</u> and <u>reading</u>
 directly on the instruments <u>display</u>
- Upto <u>240 measurement</u> values are <u>displayed</u> at a time in easy-to read grey-scale
- Menu-driven approach facilitates <u>simple</u>
 <u>operation</u> using just nine functions keys

Features

- Total memory for <u>2,35,000 readings</u> which can be <u>stored</u>
- Allows <u>downloading</u>, <u>presenting and editing</u>
 <u>data</u> measured by the Canin+ half-cell instrument
- New features such as a <u>backlight display</u> and faster processing of data


Applications

- Canin+ is <u>ideally suited</u> for <u>assessment</u> of <u>corrosion potentials</u> on areas of all sizes
- This is made possible by the <u>selectable grid size</u>
- The <u>wheel electrode</u>, in particular, makes it easy to <u>rapidly cover larger areas</u>

- <u>Concrete resistivity method</u> the instrument <u>measures</u> the <u>specific electrical resistivity</u> of <u>concrete</u>.
- <u>Surface resistivity</u> measurement provides extremely useful information about the <u>state of a</u> <u>concrete</u> structure.

- It <u>suggests</u> the <u>likelihood of corrosion</u> and the <u>corrosion rate</u>.
- Studies have shown that there is a <u>direct</u>
 <u>direct</u>
 <u>correlation</u> between <u>resistivity</u> and <u>chloride</u>
 <u>diffusion rate</u>.

- This is <u>based</u> on the classical <u>four electrode</u>
 system in which four equally spaced electrodes
 <u>are electrically connected</u> to the concrete
 surface.
- The <u>two outer electrodes</u> are connected to a source of alternating current.
- The <u>two inner electrodes</u> are connected to voltmeter.

METHODOLOGY - RESISTIVITY METER

- The set of <u>four probes</u> are fitted with <u>super</u> <u>conductive foam tips</u> (kept moist) to ensure <u>full</u> <u>contact</u> on <u>irregular surfaces</u>.
- Once the <u>probes are kept in contact</u> with the concrete surface, the <u>LCD display</u> will <u>indicate</u> the <u>resistivity directly</u> on the screen.

 The <u>limits of possible corrosion</u> are related with resistivity as under:

• With $\rho > 12$ KW-cm Corrosion is improbable

• With ρ = 8 to 12 KW-cm Corrosion is probable

• With ρ < 8 KW-cm Corrosion is fairly sure

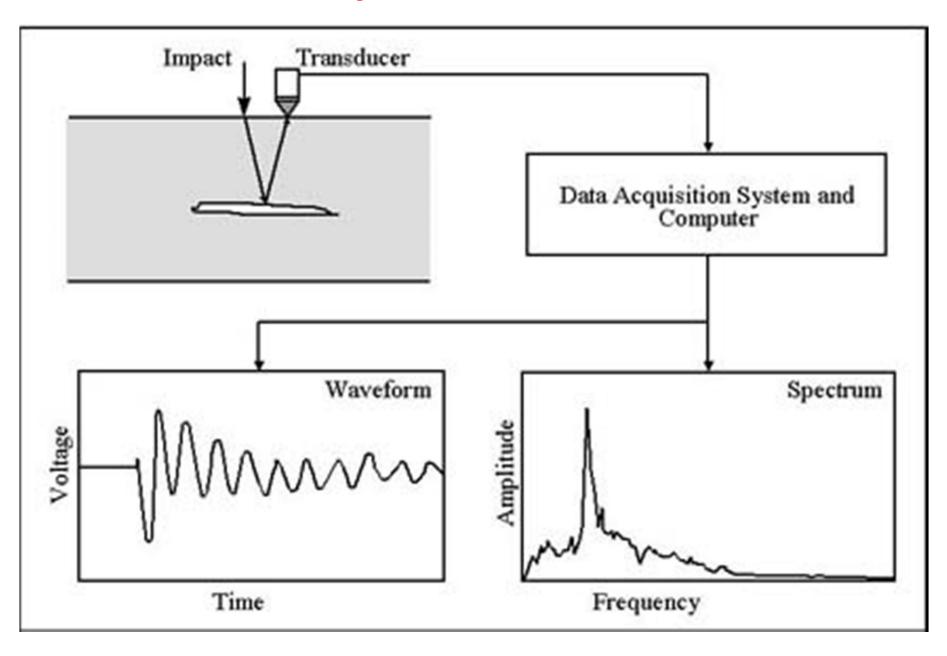
where ρ (rho) is the resistivity

The versatility of the method can be seen in these example applications:

- Estimation of the likelihood of corrosion
- Indication of corrosion rate
- Correlation to chloride permeability
- Identification of areas within a structure most susceptible to chloride penetration
- Determination of zonal requirements for cathodic protection systems

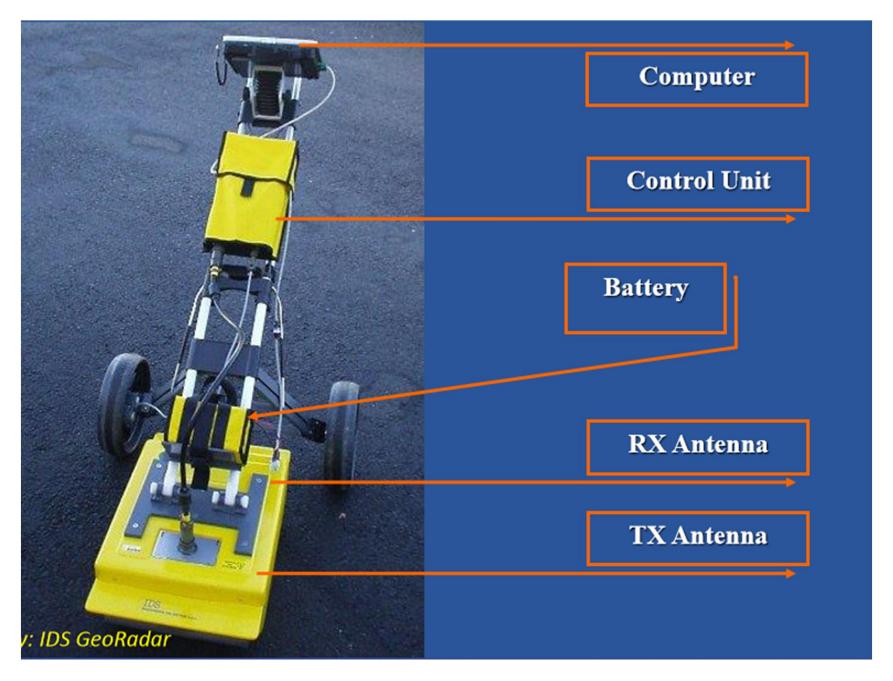
Limitations

- The <u>method is slow</u> because it covers small area at a time
- The system <u>if used in combination with half cell</u>
 <u>potentiometer</u> gives <u>better indication of corrosion</u>
 in reinforced concrete

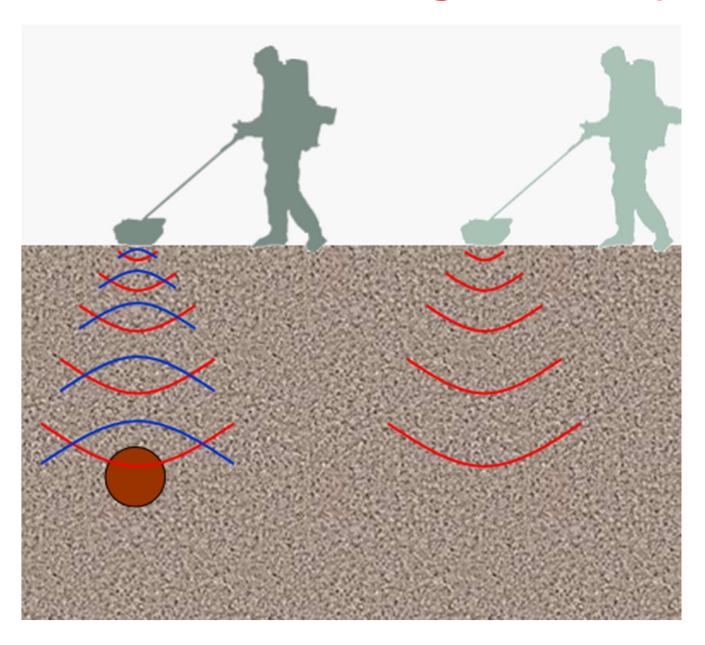

• Here, an <u>impacting device</u> such as a <u>hammer</u> is <u>struck on</u> the concrete <u>surface</u>.

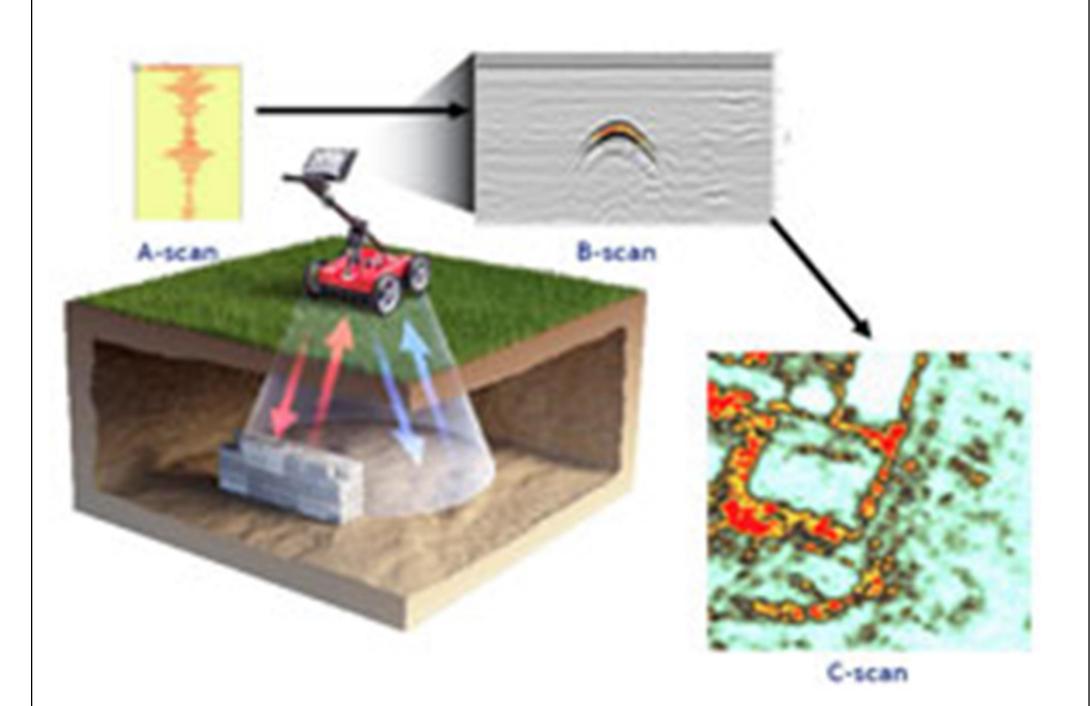
• The <u>sound waves</u> that <u>reflect off</u> from voids or discontinuities are <u>picked up</u> by a recovery <u>receiving</u> <u>probe</u> and <u>conveyed</u> to a <u>signal processor</u>.

• This wave form is analysed in the signal processor, and amplitude and travel time of waves are evaluated for the determination of homogeneity and integrity of concrete.

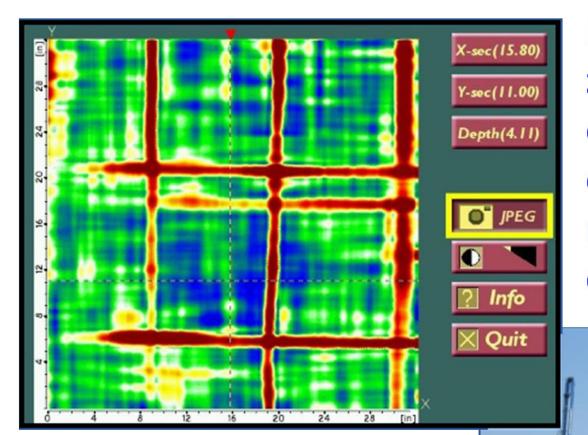

How Impact-Echo Works?

Ground Penetrating RADAR (GPR)

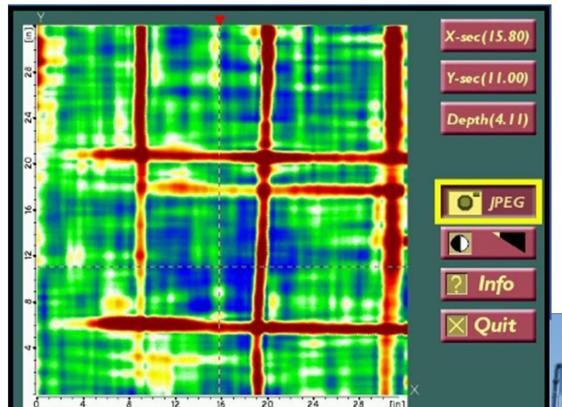

RADAR – RAdio Detection And Ranging



- Equipment normally consists of :-
 - A transmitter
 - A receiver antenna
 - -A RADAR control unit
 - Suitable data storage and control devices


- GPR is a geo-physical method that uses radar pulses to image subsurface.
- It uses <u>high frequency polarised radio waves</u> for transmitting them into ground.
- When the <u>wave hits a buried object</u> or a boundary with different dielectric constants, the receiving antenna records variations in the reflected return signal.

 Ground Penetrating Radar (GPR) Systems can accurately and nondestructively "see" through solid pavement materials, such as asphalt, concrete and soil to detect subsurface objects and determine the condition and thickness of the material examined.


- GPR can be used to <u>collect information on subsurface elements</u> in roads, bridges, sports grounds, golf courses, cemeteries and in RC structures.
- It can accurately locate <u>metallic and non-metallic reinforcements</u> and <u>pipes</u> below concrete slabs.
- It can also detect flaws in concrete structures.

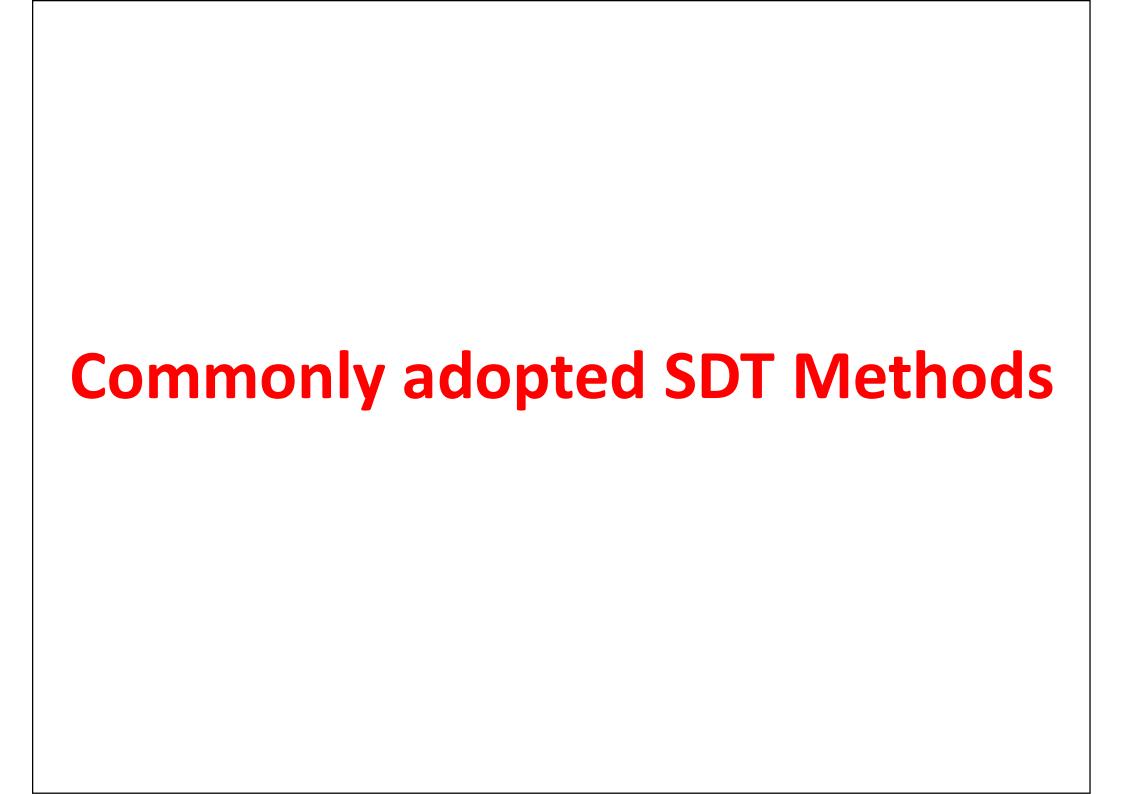
Mapping deterioration zones in reinforced concrete, consistent with corrosive environment & related damage such as delaminations and spalls

Rebar and tension cable location and depth

Slab thickness on grade and suspended

Location of non-metallic and metallic conduits and other embedded non-structural features such as fiber networks, in-floor heating elements, and plumbing

Detection of voids and variations in the concrete matrix



Some applications of GPR are :-

- Determining <u>concrete thickness</u> and <u>cover</u> <u>concrete</u>.
- Evaluation of <u>bridge decks</u> and <u>pavements</u>.
- Locating <u>rebars</u>, <u>post tensioned cables</u>, <u>conduits</u>, <u>metal pipes</u> and <u>PVC pipes</u>.
- Locating <u>pipes</u>, <u>water lines</u>, <u>storm water</u> and <u>sewer</u> <u>systems</u> buried in soil.
- Detecting <u>irrigation and septic field systems</u>, <u>under ground storage tanks</u> and <u>under ground utilities</u>.

• GPR is an ideal technology for detection bridge deck delaminations, voids, subsurface moisture accumulation and the thickness of asphalt pavement layers All at highway speeds!

CONCRETE CORE CUTTER

- Vibration-free, precise and robust instruments
- Drilling Tools have diamond bits
- Wet drilling or dry drilling
- Effective, low-vibration economical working

GDB 1600 WE- DIAMOND CONCRETE CUTTER

Dia.: In concrete: 30-82 mm

In masonry: 52-132 mm (with suction head)

- Power input: 1600 W
- No-load Speed: 1st & 2nd gear: 980 & 2400 rpm
- Weight: 5.9 kg

GDB 2500 WE - DIAMOND CONCRETE CUTTER

Drilling Dia. Concrete: 32-212 mm

Drilling stroke : 500 mm

Power input : 2500 W

No-load speed : 1st & 2nd gear 410 & 900 rpm

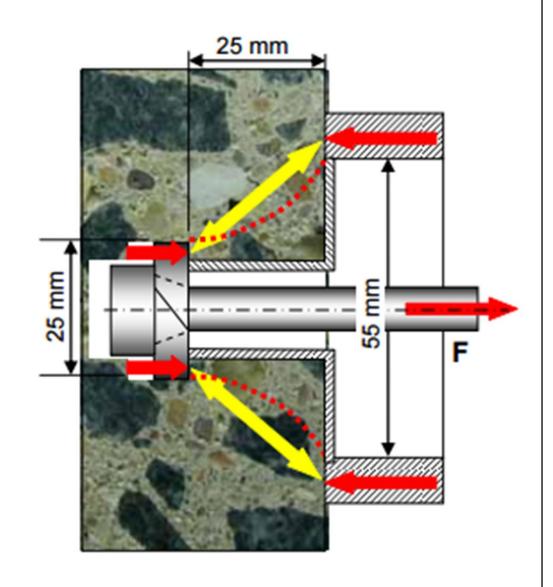
• Weight : 5.9 Kg

S 500 A - DRILL STAND

Drill Stroke: 500 mm

• Column length: 1000 mm

• Weight: 12.5 kg

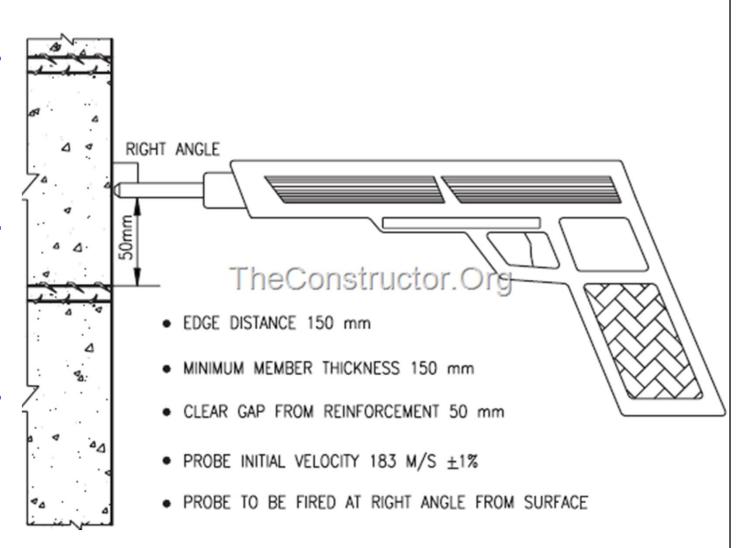


CAPO TEST

CAPO TEST

- In this method,
 appropriate dia and
 depth of holes are made
 using a specific tool.
- The <u>specially designed</u>
 tool with <u>enlarged mouth</u>
 will be <u>driven into the</u>
 hole and <u>thoroughly</u>
 fastened.

CAPO TEST


- Then the <u>insert</u> will be <u>pulled off</u> with a <u>hydraulic</u> <u>system</u>.
- The required force to pull
 the insert along with
 concrete is measured &
 correlated with calibration
 chart to assess the
 strength of concrete.

Generally conducted when the core test cannot be conducted.

A standard steel pin is driven in to the concrete surface with special gun operated by spring charge.

- The <u>depth of penetration is</u> measured.
- Since the depth of penetration is inversely proportional to compressive strength, the device provides a fast and safe way to find the strength of concrete.

One <u>should be very careful</u> while using this device as there will be chances of <u>causing injury</u> to the neighbouring person <u>if it is not held</u> <u>properly</u> during testing.

Load Testing of Structures

- If NDT and SDT results fail to give satisfactory information regarding the strength and quality, then load test will be conducted and it is the most acceptable test. For flexural members
- Subjected load = Full DL + 1.25 x Imposed Load
- Deflection due to imposed load is recorded
- After 24 hours, Imposed Load is removed
- Recovery of deflection is also calculated

Load Testing of Flexure Structures

Instruments used in Load testing:-

- Deflectometers
- LVDTs (Linearly Varying Displacement Transducers)
- Sand bags
- Water ponding
- Trucks carrying measured loads (for bridge decks)

Tests for Carbonation of Concrete

- <u>Carbonation</u> of concrete in cover results in <u>loss of</u>
 <u>protection</u> to the steel against corrosion.
- The depth of carbonation can be measured by spraying the <u>freshly</u> fractured concrete surface with a 0.2% solution of phenolphthalein in ethanol.

Tests for Carbonation of Concrete

 Since Phenolphthalein is a pH indicator, the magenta (pink colour) area presents uncarbonated concrete and the remaining (colourless) portion, the carbonated area.

Tests for Carbonation of Concrete

- The change in colour occurs at around pH 10 of concrete.
- The <u>test</u> must be applied only to <u>freshly</u>
 <u>exposed surfaces</u>, because reaction with atmospheric carbon dioxide starts immediately.
- Relating <u>carbonation depth</u> to concrete cover is one of the <u>main indicators of corrosion</u>.

Test for Chloride Content in Concrete

- The <u>presence of chloride</u> in the concrete is the <u>contributory factor</u> towards <u>corrosion of</u> reinforcement.
- Portable equipments are available in the market, which can be used for <u>rapid</u> on <u>site</u> measurement of chloride content of concrete.
- The <u>chloride content</u> of concrete <u>can also be</u> determined by <u>chemical analysis</u> of concrete in the <u>laboratory</u>.

Test for Chloride Content in Concrete

- A rotary percussion drill is used to collect a
 pulverized sample of concrete and a special
 acid extracts the chlorides.
- <u>Different samples</u> are obtained from <u>different</u> <u>concrete depths</u>, to establish the <u>chloride</u> contamination in the concrete.

Test for Sulphate Content in Concrete

- The <u>quantity of suphates</u> in concrete is determined generally by well defined chemical analysis in the laboratory.
- This <u>test</u> will be <u>carried out</u> on the <u>concrete</u> <u>samples</u> collected from the members at different depths.
- The <u>results</u> are expressed in terms of <u>percentage</u>
 of <u>sulphates</u> by <u>weight of concrete</u>.

Test for Sulphate Content in Concrete

- Presence of <u>high amount of sulphates</u> will result in <u>reaction</u> of <u>calcium</u> present in <u>cement</u> with sulphates.
- This <u>results</u> in <u>expansion</u> and <u>disruption</u> of concrete leads to corrosion of rebars.

Determination of pH

- The <u>level of pH</u> in concrete is <u>determined</u> generally by well defined <u>chemical analysis</u> in the laboratory.
- This <u>test</u> will be <u>carried out</u> on concrete <u>samples</u>
 <u>collected from</u> the <u>members</u> (at different depths).
- The <u>level of pH</u> in concrete will <u>indicate</u> the <u>status</u>
 of corrosion of rebars in concrete.

Concluding Remarks

- The <u>availability of wide range of NDT devices</u>
 has made it <u>easier to monitor quality</u> or <u>distress</u>
 or <u>durability</u> of concrete structures.
- The <u>NDT devices</u> have <u>proved</u> to be <u>reliable</u> and invaluable.

Concluding Remarks

- Depending on the requirement, any two or more tests are to be conducted to get the required information regarding the quality / strength of concrete.
- Interpretation of test results requires competent persons to arrive at acceptable evaluation of concrete regarding its quality and strength.

Questions?