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Flexure Elements

4.1 INTRODUCTION
The one-dimensional, axial load-only elements discussed in Chapters 2 and 3 are
quite useful in analyzing the response to load of many simple structures. How-
ever, the restriction that these elements are not capable of transmitting bending
effects precludes their use in modeling more commonly encountered structures
that have welded or riveted joints. In this chapter, elementary beam theory is
applied to develop a flexure (beam) element capable of properly exhibiting trans-
verse bending effects. The element is first presented as a line (one-dimensional)
element capable of bending in a plane. In the context of developing the dis-
cretized equations for this element, we present a general procedure for determin-
ing the interpolation functions using an assumed polynomial form for the field
variable. The development is then extended to two-plane bending and the effects
of axial loading and torsion are added.

4.2 ELEMENTARY BEAM THEORY
Figure 4.1a depicts a simply supported beam subjected to a general, distributed,
transverse load q (x ) assumed to be expressed in terms of force per unit length.
The coordinate system is as shown with x representing the axial coordinate and y
the transverse coordinate. The usual assumptions of elementary beam theory are
applicable here:

1. The beam is loaded only in the y direction.
2. Deflections of the beam are small in comparison to the characteristic

dimensions of the beam.
3. The material of the beam is linearly elastic, isotropic, and homogeneous.
4. The beam is prismatic and the cross section has an axis of symmetry in the

plane of bending.

C H A P T E R 4
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(a)

h

Figure 4.2 Beam cross sections:
(a) and (b) satisfy symmetry conditions
for the simple bending theory, (c) does
not satisfy the symmetry requirement.

(b) (c)

The ramifications of assumption 4 are illustrated in Figure 4.2, which de-
picts two cross sections that satisfy the assumption and one cross section that
does not. Both the rectangular and triangular cross sections are symmetric about
the xy plane and bend only in that plane. On the other hand, the L-shaped section
possesses no such symmetry and bends out of the xy plane, even under loading
only in that plane. With regard to the figure, assumption 2 can be roughly quan-
tified to mean that the maximum deflection of the beam is much less than di-
mension h. A generally applicable rule is that the maximum deflection is less
than 0.1h.

Considering a differential length dx of a beam after bending as in Figure 4.1b
(with the curvature greatly exaggerated), it is intuitive that the top surface has de-
creased in length while the bottom surface has increased in length. Hence, there
is a “layer” that must be undeformed during bending. Assuming that this layer is
located distance � from the center of curvature O and choosing this layer (which,
recall, is known as the neutral surface) to correspond to y = 0, the length after
bending at any position y is expressed as

ds = (� − y) d� (4.1)

(a)

y

x

q(x)

Figure 4.1
(a) Simply supported beam subjected to arbitrary (negative) distributed load.
(b) Deflected beam element. (c) Sign convention for shear force and bending
moment.
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and the bending strain is then

εx = ds − dx

dx
= (� − y) d� − � d�

� d�
= − y

�
(4.2)

From basic calculus, the radius of curvature of a planar curve is given by

� =

[
1 +

(
dv

dx

)2
]3/2

d2v

dx 2

(4.3)

where v = v(x) represents the deflection curve of the neutral surface.
In keeping with small deflection theory, slopes are also small, so Equa-

tion 4.3 is approximated by

� = 1

d2v

dx 2

(4.4)

such that the normal strain in the direction of the longitudinal axis as a result of
bending is

εx = −y
d2v

dx 2
(4.5)

and the corresponding normal stress is

�x = Eεx = −E y
d2v

dx 2
(4.6)

where E is the modulus of elasticity of the beam material. Equation 4.6 shows
that, at a given cross section, the normal stress varies linearly with distance from
the neutral surface.

As no net axial force is acting on the beam cross section, the resultant force
of the stress distribution given by Equation 4.6 must be zero. Therefore, at any
axial position x along the length, we have

Fx =
∫
A

�x d A = −
∫
A

E y
d2v

dx 2
d A = 0 (4.7)

Noting that at an arbitrary cross section the curvature is constant, Equation 4.7
implies ∫

A

y d A = 0 (4.8)

which is satisfied if the xz plane (y = 0) passes through the centroid of the area.
Thus, we obtain the well-known result that the neutral surface is perpendicular to
the plane of bending and passes through the centroid of the cross-sectional area.
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Similarly, the internal bending moment at a cross section must be equivalent to
the resultant moment of the normal stress distribution, so

M (x ) = −
∫
A

y�x d A = E
d2v

dx 2

∫
A

y2 d A (4.9)

The integral term in Equation 4.9 represents the moment of inertia of the cross-
sectional area about the z axis, so the bending moment expression becomes

M (x ) = EI z
d2v

dx 2
(4.10)

Combining Equations 4.6 and 4.10, we obtain the normal stress equation for
beam bending:

�x = − M (x )y

Iz
= −yE

d2v

dx 2
(4.11)

Note that the negative sign in Equation 4.11 ensures that, when the beam is sub-
jected to positive bending moment per the convention depicted in Figure 4.1c,
compressive (negative) and tensile (positive) stress values are obtained correctly
depending on the sign of the y location value.

4.3 FLEXURE ELEMENT
Using the elementary beam theory, the 2-D beam or flexure element is now de-
veloped with the aid of the first theorem of Castigliano. The assumptions and re-
strictions underlying the development are the same as those of elementary beam
theory with the addition of

1. The element is of length L and has two nodes, one at each end.
2. The element is connected to other elements only at the nodes.
3. Element loading occurs only at the nodes.

Recalling that the basic premise of finite element formulation is to express
the continuously varying field variable in terms of a finite number of values eval-
uated at element nodes, we note that, for the flexure element, the field variable of
interest is the transverse displacement v(x) of the neutral surface away from its
straight, undeflected position. As depicted in Figure 4.3a and 4.3b, transverse de-
flection of a beam is such that the variation of deflection along the length is not
adequately described by displacement of the end points only. The end deflections
can be identical, as illustrated, while the deflected shape of the two cases is quite
different. Therefore, the flexure element formulation must take into account the
slope (rotation) of the beam as well as end-point displacement. In addition to
avoiding the potential ambiguity of displacements, inclusion of beam element
nodal rotations ensures compatibility of rotations at nodal connections between
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v1 v2

(a)

Figure 4.3
(a) and (b) Beam elements with identical end deflections but quite different
deflection characteristics. (c) Physically unacceptable discontinuity at the
connecting node.

v1 v2
v � 0

(b) (c)

elements, thus precluding the physically unacceptable discontinuity depicted in
Figure 4.3c.

In light of these observations regarding rotations, the nodal variables to be
associated with a flexure element are as depicted in Figure 4.4. Element nodes 1
and 2 are located at the ends of the element, and the nodal variables are the trans-
verse displacements v1 and v2 at the nodes and the slopes (rotations) �1 and �2.
The nodal variables as shown are in the positive direction, and it is to be noted
that the slopes are to be specified in radians. For convenience, the superscript (e)
indicating element properties is not used at this point, as it is understood in con-
text that the current discussion applies to a single element. When multiple ele-
ments are involved in examples to follow, the superscript notation is restored.

The displacement function v(x) is to be discretized such that

v(x ) = f (v1, v2, �1, �2, x ) (4.12)

subject to the boundary conditions

v(x = x1) = v1 (4.13)

v(x = x2) = v2 (4.14)

dv

dx

∣∣∣∣
x=x1

= �1 (4.15)

dv

dx

∣∣∣∣
x=x2

= �2 (4.16)

�1

�2

y

x

v1 v2

L
1 2

Figure 4.4 Beam element nodal
displacements shown in a positive
sense.
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M1

�M1

Mz F1L � M2 � M1

F1L � M1
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x

F1 F2

1 2

Figure 4.5 Bending moment diagram for
a flexure element. Sign convention per the
strength of materials theory.

Before proceeding, we assume that the element coordinate system is chosen such
that x1 = 0 and x2 = L to simplify the presentation algebraically. (This is not at
all restrictive, since L = x2 − x1 in any case.)

Considering the four boundary conditions and the one-dimensional nature of
the problem in terms of the independent variable, we assume the displacement
function in the form

v(x ) = a0 + a1x + a2x 2 + a3x 3 (4.17)

The choice of a cubic function to describe the displacement is not arbitrary.
While the general requirements of interpolation functions is discussed in
Chapter 6, we make a few pertinent observations here. Clearly, with the specifi-
cation of four boundary conditions, we can determine no more than four con-
stants in the assumed displacement function. Second, in view of Equations 4.10
and 4.17, the second derivative of the assumed displacement function v(x ) is
linear; hence, the bending moment varies linearly, at most, along the length of the
element. This is in accord with the assumption that loads are applied only at
the element nodes, as indicated by the bending moment diagram of a loaded
beam element shown in Figure 4.5. If a distributed load were applied to the ele-
ment across its length, the bending moment would vary at least quadratically.

Application of the boundary conditions 4.13–4.16 in succession yields

v(x = 0) = v1 = a0 (4.18)

v(x = L ) = v2 = a0 + a1 L + a2 L 2 + a3 L 3 (4.19)
dv

dx

∣∣∣∣
x=0

= �1 = a1 (4.20)

dv

dx

∣∣∣∣
x=L

= �2 = a1 + 2a2 L + 3a3 L 2 (4.21)
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Equations 4.18–4.21 are solved simultaneously to obtain the coefficients in terms
of the nodal variables as

a0 = v1 (4.22)

a1 = �1 (4.23)

a2 = 3

L 2
(v2 − v1) − 1

L
(2�1 + �2) (4.24)

a3 = 2

L 3
(v1 − v2) + 1

L 2
(�1 + �2) (4.25)

Substituting Equations 4.22–4.25 into Equation 4.17 and collecting the coeffi-
cients of the nodal variables results in the expression

v(x ) =
(

1 − 3x 2

L 2
+ 2x 3

L 3

)
v1 +

(
x − 2x 2

L
+ x 3

L 2

)
�1

+
(

3x 2

L 2
− 2x 3

L 3

)
v2 +

(
x 3

L 2
− x 2

L

)
�2 (4.26)

which is of the form

v(x ) = N1(x )v1 + N2(x )�1 + N3(x )v2 + N4(x )�2 (4.27a)

or, in matrix notation,

v(x) = [N1 N2 N3 N4]




v1

�1

v2

�2


 = [N ] {�} (4.27b)

where N1, N2, N3, and N4 are the interpolation functions that describe the dis-
tribution of displacement in terms of nodal values in the nodal displacement
vector {�}.

For the flexure element, it is convenient to introduce the dimensionless
length coordinate

� = x

L
(4.28)

so that Equation 4.26 becomes

v(x ) = (1 − 3� 2 + 2� 3)v1 + L (� − 2� 2 + � 3)�1 + (3� 2 − 2� 3)v2

+ L� 2(� − 1)�2 (4.29)

where 0 ≤ � ≤ 1. This form proves more amenable to the integrations required
to complete development of the element equations in the next section.

As discussed in Chapter 3, displacements are important, but the engineer is
most often interested in examining the stresses associated with given loading
conditions. Using Equation 4.11 in conjunction with Equation 4.27b, the normal
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stress distribution on a cross section located at axial position x is given by

�x (x , y) = −y E
d2[N ]

dx 2
{�} (4.30)

Since the normal stress varies linearly on a cross section, the maximum and min-
imum values on any cross section occur at the outer surfaces of the element,
where distance y from the neutral surface is largest. As is customary, we take the
maximum stress to be the largest tensile (positive) value and the minimum to be
the largest compressive (negative) value. Hence, we rewrite Equation 4.30 as

�x (x ) = ymax E
d2[N ]

dx 2
{�} (4.31)

and it is to be understood that Equation 4.31 represents the maximum and mini-
mum normal stress values at any cross section defined by axial coordinate x. Also
ymax represents the largest distances (one positive, one negative) from the neutral
surface to the outside surfaces of the element. Substituting for the interpolation
functions and carrying out the differentiations indicated, we obtain

�x (x ) = ymax E

[(
12x

L 3
− 6

L 2

)
v1 +

(
6x

L 2
− 4

L

)
�1 +

(
6

L 2
− 12x

L 3

)
v2

+
(

6x

L 2
− 2

L

)
�2

]
(4.32)

Observing that Equation 4.32 indicates a linear variation of normal stress along
the length of the element and since, once the displacement solution is obtained,
the nodal values are known constants, we need calculate only the stress values
at the cross sections corresponding to the nodes; that is, at x = 0 and x = L . The
stress values at the nodal sections are given by

�x (x = 0) = ymax E

[
6

L 2
(v2 − v1) − 2

L
(2�1 + �2)

]
(4.33)

�x (x = L ) = ymax E

[
6

L 2
(v1 − v2) + 2

L
(2�2 + �1)

]
(4.34)

The stress computations are illustrated in following examples.

4.4 FLEXURE ELEMENT STIFFNESS MATRIX
We may now utilize the discretized approximation of the flexure element dis-
placement to examine stress, strain, and strain energy exhibited by the element
under load. The total strain energy is expressed as 

Ue = 1

2

∫
V

�x εx dV (4.35)
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where V is total volume of the element. Substituting for the stress and strain per
Equations 4.5 and 4.6,

Ue = E

2

∫
V

y2

(
d2v

dx 2

)2

dV (4.36)

which can be written as

Ue = E

2

L∫
0

(
d2v

dx2

)2

∫

A

y2 dA


 dx (4.37)

Again recognizing the area integral as the moment of inertia Iz about the cen-
troidal axis perpendicular to the plane of bending, we have 

Ue = EI z

2

L∫
0

(
d2v

dx 2

)2

dx (4.38)

Equation 4.38 represents the strain energy of bending for any constant cross-
section beam that obeys the assumptions of elementary beam theory. For the
strain energy of the finite element being developed, we substitute the discretized
displacement relation of Equation 4.27 to obtain

Ue = EI z

2

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)2

dx (4.39)

as the approximation to the strain energy. We emphasize that Equation 4.39 is an
approximation because the discretized displacement function is not in general an
exact solution for the beam flexure problem.

Applying the first theorem of Castigliano to the strain energy function with
respect to nodal displacement v1 gives the transverse force at node 1 as

∂Ue

∂v1
= F1 = EI z

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)
d2 N1

dx 2
dx

(4.40)

while application of the theorem with respect to the rotational displacement
gives the moment as

∂Ue

∂�1
= M1 = EI z

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)
d2 N2

dx 2
dx

(4.41)
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For node 2, the results are

∂Ue

∂v2
= F2 = EI z

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)
d2 N3

dx 2
dx

(4.42)

∂Ue

∂�2
= M2 = EI z

L∫
0

(
d2 N1

dx 2
v1 + d2 N2

dx 2
�1 + d2 N3

dx 2
v2 + d2 N4

dx 2
�2

)
d2 N4

dx 2
dx

(4.43)

Equations 4.40–4.43 algebraically relate the four nodal displacement values to
the four applied nodal forces (here we use force in the general sense to include
applied moments) and are of the form




k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44







v1

�1

v2

�2




=




F1

M1

F2

M2




(4.44)

where kmn , m , n = 1, 4 are the coefficients of the element stiffness matrix. By
comparison of Equations 4.40–4.43 with the algebraic equations represented by
matrix Equation 4.44, it is seen that

kmn = knm = EIz

L∫
0

d2 Nm

dx2

d2 Nn

dx2
dx m, n = 1, 4 (4.45)

and the element stiffness matrix is symmetric, as expected for a linearly elastic
element.

Prior to computing the stiffness coefficients, it is convenient to convert the
integration to the dimensionless length variable � = x/L by noting

L∫
0

f (x ) dx =
1∫

0

f (� )L d� (4.46)

d

dx
= 1

L

d

d�
(4.47)

so the integrations of Equation 4.45 become

kmn = knm = EI z

L∫
0

d2 Nm

dx 2

d2 Nn

dx 2
dx = EI z

L 3

1∫
0

d2 Nm

d� 2

d2 Nn

d� 2
d� m , n = 1, 4

(4.48)
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The stiffness coefficients are then evaluated as follows:

k11 = EI z

L 3

1∫
0

(12� − 6)2 d� = 36EI z

L 3

1∫
0

(4� 2 − 4� + 1) d�

= 36EI z

L 3

(
4

3
− 2 + 1

)
= 12EI z

L 3

k12 = k21 = EI z

L 3

1∫
0

(12� − 6)(6� − 4)L d� = 6EI z

L 2

k13 = k31 = EI z

L 3

1∫
0

(12� − 6)(6 − 12� ) d� = − 12EI z

L 3

k14 = k41 = EI z

L 3

1∫
0

(12� − 6)(6� − 2)L d� = 6EI z

L 2

Continuing the direct integration gives the remaining stiffness coefficients as

k22 = 4EI z

L

k23 = k32 = − 6EI z

L 2

k24 = k42 = 2EI z

L

k33 = 12EI z

L 3

k34 = k43 = − 6EI z

L 3

k44 = 4EI z

L

The complete stiffness matrix for the flexure element is then written as

[ke] = EIz

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


 (4.49)

Symmetry of the element stiffness matrix is apparent, as previously observed.
Again, the element stiffness matrix can be shown to be singular since rigid body
motion is possible unless the element is constrained in some manner. The ele-
ment stiffness matrix as given by Equation 4.49 is valid in any consistent system
of units provided the rotational degrees of freedom (slopes) are expressed in
radians.
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(a)

M1 M2

F1 F2

(b)
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(c)
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M
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�

�

Figure 4.6
(a) Nodal load positive convention. (b) Positive convention from the strength of materials theory.
(c) Shear and bending moment diagrams depicting nodal load effects.

4.5 ELEMENT LOAD VECTOR
In Equations 4.40–4.43, the element forces and moments were treated as required
by the first theorem of Castigliano as being in the direction of the associated dis-
placements. These directions are in keeping with the assumed positive directions
of the nodal displacements. However, as depicted in Figures 4.6a and 4.6b, the
usual convention for shear force and bending moment in a beam are such that




F1

M1

F2

M2


 ⇒




−V1

−M1

V2

M2


 (4.50)

In Equation 4.50, the column matrix (vector) on the left represents positive
nodal forces and moments per the finite element formulations. The right-hand
side contains the corresponding signed shear forces and bending moments per
the beam theory sign convention.

If two flexure elements are joined at a common node, the internal shear
forces are equal and opposite unless an external force is applied at that node, in
which case the sum of the internal shear forces must equal the applied load.
Therefore, when we assemble the finite element model using flexure elements,
the force at a node is simply equal to any external force at that node. A similar
argument holds for bending moments. At the juncture between two elements
(i.e., a node), the internal bending moments are equal and opposite, thus self-
equilibrating, unless a concentrated bending moment is applied at that node. In
this event, the internal moments sum to the applied moment. These observations
are illustrated in Figure 4.6c, which shows a simply supported beam subjected to
a concentrated force and concentrated moment acting at the midpoint of the
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P

(a)

L
2

L
2

v3v2v1

(b)

�1

�2 �3

11 32 2

(c)

�2

v1 � �1 � 0 v3 � 0v2

�3

Figure 4.7
(a) Loaded beam of Example 4.1. (b) Element and displacement designations.
(c) Displacement solution.

beam length. As shown by the shear force diagram, a jump discontinuity exists at
the point of application of the concentrated force, and the magnitude of the dis-
continuity is the magnitude of the applied force. Similarly, the bending moment
diagram shows a jump discontinuity in the bending moment equal to the magni-
tude of the applied bending moment. Therefore, if the beam were to be divided
into two finite elements with a connecting node at the midpoint, the net force at
the node is the applied external force and the net moment at the node is the ap-
plied external moment.

Figure 4.7a depicts a statically inderminate beam subjected to a transverse load applied at
the midspan. Using two flexure elements, obtain a solution for the midspan deflection.

■ Solution
Since the flexure element requires loading only at nodes, the elements are taken to be of
length L/2, as shown in Figure 4.7b. The individual element stiffness matrices are then

[
k(1)

] = [
k(2)

] = EIz

(L/2)3




12 6L/2 −12 6L/2
6L/2 4L2/4 −6L/2 2L2/4
−12 −6L/2 12 −6L/2
6L/2 2L2/4 −6L/2 4L2/4




= 8EIz

L3




12 3L −12 3L
3L L2 −3L L2/2
−12 −3L 12 −3L
3L L2/2 −3L L2




Note particularly that the length of each element is L/2. The appropriate boundary con-
ditions are v1 = �1 = v3 = 0 and the element-to-system displacement correspondence
table is Table 4.1.

EXAMPLE 4.1
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Table 4.1 Element-to-System Displacement Correspondence

Global Displacement Element 1 Element 2

1 1 0
2 2 0
3 3 1
4 4 2
5 0 3
6 0 4

Assembling the global stiffness matrix per the displacement correspondence table
we obtain in order (and using the symmetry property)

K11 = k (1)
11 = 96EI z

L 3

K12 = k (1)
12 = 24EI z

L 2

K13 = k (1)
13 = −96EI z

L 3

K14 = k (1)
14 = 24EI z

L 2

K22 = k (1)
22 = 8EI z

L

K23 = k (1)
23 = −24EI z

L 2

K24 = k (1)
24 = 4EI z

L

K25 = K26 = 0

K33 = k (1)
33 + k (2)

11 = 192EI z

L 3

K34 = k (1)
34 + k (2)

12 = 0

K35 = k (2)
13 = −96EI z

L 3

K36 = k (2)
14 = 24EI z

L 2

K44 = k (1)
44 + k (1)

22 = 16EI z

L

K45 = k (2)
23 = −24EI z

L 2
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K46 = k (2)
24 = 4EI z

L

K55 = k (2)
33 = 96EI z

L 3

K56 = k (2)
34 = −24EI z

L 2

K66 = k (2)
44 = 8EI z

L
Using the general form 

[K ]{U } = {F }
we obtain the system equations as

EIz

L3




96 24L −96 24L 0 0
24L 8L2 −24L 4L2 0 0
−96 −24L 192 0 −96 24L
24L 4L2 0 16L2 −24L 4L2

0 0 −96 −24L 96 24L
0 0 24L 4L2 24L 8L2







v1

�1

v2

�2

v3

�3




=




F1

M1

F2

M2

F3

M3




Invoking the boundary conditions v1 = �1 = v3 = 0, the reduced equations become

EIz

L3


 192 0 24L

0 16L2 4L2

24L 4L2 8L2







v2

�2

�3


 =




−P
0
0




Yielding the nodal displacements as

v2 = −7PL3

768EI z
�2 = −PL2

128EI z
�3 = PL2

32EI z

The deformed beam shape is shown in superposition with a plot of the undeformed shape
with the displacements noted in Figure 4.7c. Substitution of the nodal displacement val-
ues into the constraint equations gives the reactions as

F1 = EI z

L 3
(−96v2 + 24L�2) = 11P

16

F3 = EI z

L 3
(−96v2 − 24L�2 − 24L�3) = 5P

16

M1 = EI z

L 3
(−24Lv2 + 4L 2�2) = 3PL

16

Checking the overall equilibrium conditions for the beam, we find

∑
Fy = 11P

16
− P + 5P

16
= 0
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and summing moments about node 1,

∑
M = 3PL

16
− P

L

2
+ 5P

16
L = 0

Thus, the finite element solution satisfies global equilibrium conditions.

The astute reader may wish to compare the results of Example 4.1 with those
given in many standard beam deflection tables, in which case it will be found that
the results are in exact agreement with elementary beam theory. In general, the
finite element method is an approximate method, but in the case of the flexure
element, the results are exact in certain cases. In this example, the deflection
equation of the neutral surface is a cubic equation and, since the interpolation
functions are cubic, the results are exact. When distributed loads exist, however,
the results are not necessarily exact, as will be discussed next.

4.6 WORK EQUIVALENCE
FOR DISTRIBUTED LOADS

The restriction that loads be applied only at element nodes for the flexure ele-
ment must be dealt with if a distributed load is present. The usual approach is to
replace the distributed load with nodal forces and moments such that the me-
chanical work done by the nodal load system is equivalent to that done by the
distributed load. Referring to Figure 4.1, the mechanical work performed by the
distributed load can be expressed as

W =
L∫

0

q (x )v(x ) dx (4.51)

The objective here is to determine the equivalent nodal loads so that the work
expressed in Equation 4.51 is the same as

W =
L∫

0

q (x )v(x ) dx = F1qv1 + M1q�1 + F2qv2 + M2q�2 (4.52)

where F1q , F2q are the equivalent forces at nodes 1 and 2, respectively, and
M1q and M2q are the equivalent nodal moments. Substituting the discretized dis-
placement function given by Equation 4.27, the work integral becomes

W =
L∫

0

q (x )[N1(x )v1 + N2(x )�1 + N3(x )v2 + N4(x )�2] dx (4.53)
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Comparison of Equations 4.52 and 4.53 shows that

F1q =
L∫

0

q (x ) N1(x ) dx (4.54)

M1q =
L∫

0

q (x ) N2(x ) dx (4.55)

F2q =
L∫

0

q (x ) N3(x ) dx (4.56)

M2q =
L∫

0

q (x ) N4(x ) dx (4.57)

Hence, the nodal force vector representing a distributed load on the basis of work
equivalence is given by Equations 4.54–4.57. For example, for a uniform load
q (x ) = q = constant, integration of these equations yields




F1q

M1q

F2q

M2q




=




qL

2
qL2

12
qL

2
−qL2

12




(4.58)

The equivalence of a uniformly distributed load to the corresponding nodal loads
on an element is shown in Figure 4.8.

The simply supported beam shown in Figure 4.9a is subjected to a uniform transverse
load, as shown. Using two equal-length elements and work-equivalent nodal loads, ob-
tain a finite element solution for the deflection at midspan and compare it to the solution
given by elementary beam theory.  

(a)

q

L
1 2

x

(b)

qL
2

qL2

12
qL2

12

qL
2

Figure 4.8 Work-equivalent nodal forces and moments for a uniform
distributed load.

EXAMPLE 4.2
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(a)

q

y

x

L

(b)

v3v1

�2 �3

�1

v2

11 32 2

(c)

q

L
2

1 2

q

L
2

2 3

qL2

48
qL2

48

qL
4

qL
4

qL2

48
qL2

48

qL
4

qL
4

(d)

Figure 4.9
(a) Uniformly loaded beam of Example 4.2. (b) Node, element, and displacement notation. (c) Element
loading. (d) Work-equivalent nodal loads.

■ Solution
Per Figure 4.9b, we number the nodes and elements as shown and note the boundary con-
ditions v1 = v3 = 0. We could also note the symmetry condition that �2 = 0. However, in
this instance, we let that fact occur as a result of the solution process. The element stiff-
ness matrices are identical, given by

[
k(1)

] = [
k(2)

] = EIz

(L/2)3




12 6L/2 −12 6L/2
6L/2 4L2/4 −6L/2 2L2/4
−12 −6L/2 12 −6L/2
6L/2 2L2/4 −6L/2 4L2/4




= 8EIz

L3




12 3L −12 3L
3L L2 −3L L2/2
−12 −3L 12 −3L
3L L2/2 −3L L2




(again note that the individual element length L/2 is used to compute the stiffness
terms), and Table 4.2 is the element connectivity table, so the assembled global stiffness
matrix is

[K ] = 8EIz

L3




12 3L −12 3L 0 0
3L L2 −3L L2/2 0 0
−12 −3L 24 0 −12 3L
3L L2/2 0 2L2 −3L L2/2
0 0 −12 −3L 12 −3L
0 0 3L L2/2 −3L L2




The work-equivalent loads for each element are computed with reference to Figure 4.9c
and the resulting loads shown in Figure 4.9d. Observing that there are reaction forces at
both nodes 1 and 3 in addition to the equivalent forces from the distributed load, the
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global equilibrium equations become 

[K ]




v1

�1

v2

�2

v3

�3




=




−qL

4
+ F1

−qL2

48
−qL

2
0

−qL

4
+ F3

qL2

48




where the work-equivalent nodal loads have been utilized per Equation 4.58, with each
element length = L/2 and q (x ) = −q , as shown in Figure 4.9c. Applying the constraint
and symmetry conditions, we obtain the system

8EIz

L3




L2 −3L L2/2 0
−3L 24 0 3L
L2/2 0 2L2 L2/2

0 3L L2/2 L2







�1

v2

�2

�3




=




−qL2

48
−qL

2
0

qL2

48




which, on simultaneous solution, gives the displacements as

�1 = − qL3

24EI z

�2 = 0

v2 = − 5qL4

384EI z

�3 = qL3

24EI z

As expected, the slope of the beam at midspan is zero, and since the loading and sup-
port conditions are symmetric, the deflection solution is also symmetric, as indicated by

Table 4.2 Element Connectivity

Global Displacement Element 1 Element 2

1 1 0
2 2 0
3 3 1
4 4 2
5 0 3
6 0 4
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(a)

300 mm

O

D

B C
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200 mm

F � 10 kN
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U5

U6

U3U1

U4U2
2

3

1

(b)

v1
(1) v2

(1)

�1
(1)

�2
(1)

v1
(2) v2

(2)

�1
(2)

�2
(2)

v2
(3)

v1
(3)

u2
(3)

u1
(3)

(c)

Figure 4.10
(a) Supported beam. (b) Global coordinate system and variables. (c) Individual
element displacements.

the end slopes. The nodal displacement results from the finite element analysis of this
example are exactly the results obtained by a strength of materials approach. This is due
to applying the work-equivalent nodal loads. However, the general deflected shape as
given by the finite element solution is not the same as the strength of materials result. The
equation describing the deflection of the neutral surface is a quartic function of x and,
since the interpolation functions used in the finite element model are cubic, the deflection
curve varies somewhat from the exact solution. 

In Figure 4.10a, beam OC is supported by a smooth pin connection at O and supported at
B by an elastic rod BD, also through pin connections. A concentrated load F = 10 kN is
applied at C. Determine the deflection of point C and the axial stress in member BD. The
modulus of elasticity of the beam is 207 GPa (steel) and the dimensions of the cross sec-
tion are 40 mm × 40 mm. For elastic rod BD, the modulus of elasticity is 69 GPa (alu-
minum) and the cross-sectional area is 78.54 mm2.

■ Solution
This is the first example in which we use multiple element types, as the beam is modeled
with flexure elements and the elastic rod as a bar element. Clearly, the horizontal member

EXAMPLE 4.3
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Table 4.3 Displacement Scheme

Global Figure 4.10b Element 1 Element 2 Element 3

1 U1 v(1)
1 0 0

2 U2 �(1)
1 0 0

3 U3 v(1)
2 v(2)

1 u(3)
1

4 U4 �(1)
2 �(2)

1 0

5 U5 0 v(2)
2 0

6 U6 0 �(2)
2 0

7 U7 0 0 u(3)
2

is subjected to bending loads, so the assumptions of the bar element do not apply to this
member. On the other hand, the vertical support member is subjected to only axial load-
ing, since the pin connections cannot transmit moment. Therefore, we use two different
element types to simplify the solution and modeling. The global coordinate system and
global variables are shown in Figure 4.10b, where the system is divided into two flexure
elements (1 and 2) and one spar element (3). For purposes of numbering in the global
stiffness matrix, the displacement scheme in Table 4.3 is used.

While the notation shown in Figure 4.10b may appear to be inconsistent with previ-
ous notation, it is simpler in terms of the global equations to number displacements suc-
cessively. By proper assignment of element displacements to global displacements, the
distinction between linear and rotational displacements are clear. The individual element
displacements are shown in Figure 4.10c, where we show the bar element in its general
2-D configuration, even though, in this case, we know that v(3)

1 = v(3)
2 = 0 and those dis-

placements are ignored in the solution. 
The element displacement correspondence is shown in Table 4.4. For the beam

elements, the moment of inertia about the z axis is

Iz = bh3

12
= 40(403)

12
= 213333 mm4

For elements 1 and 2,

EI z

L 3
= 207(103)(213333 )

3003
= 1635 .6 N/mm

Table 4.4 Element-Displacement Correspondence

Global Displacement Element 1 Element 2 Element 3

1 1 0 0
2 2 0 0
3 3 1 1
4 4 2 0
5 0 3 0
6 0 4 0
7 0 0 3
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Table 4.5 Global Stiffness Matrix

1 2 3 4 5 6 7

1 19,627.2 2.944 × 106 −19,627.2 2.944 × 106 0 0 0

2 2.944 × 106 5.888 × 108 −2.944 × 106 2.944 × 108 0 0 0

3 −19,627.2 −2.944 × 106 66,350.4 0 −19,627.2 2.944 × 106 −27,096

4 2.944 × 106 2.944 × 108 0 11.78 × 108 −2.944 × 106 2.944 × 108 0

5 0 0 −19,627.2 −2.944 × 106 19,627.2 −2.944 × 106 0

6 0 0 2.944 × 106 2.944 × 108 −2.944 × 106 5.889 × 108 0

7 0 0 −27,096 0 0 0 27,096

so the element stiffness matrices are (per Equation 4.48)

[
k(1)

] = [
k(2)

] = 1,635.6




12 1,800 −12 1,800
1,800 360,000 −1,800 180,000
−12 −1,800 12 −1,800

1,800 180,000 −1,800 360,000




while for element 3,

AE

L
= 78.54(69)(103)

200
= 27096 N/mm

so the stiffness matrix for element 3 is

[
k (3)

] = 27,096

[
1 −1

−1 1

]

Assembling the global stiffness matrix per the displacement correspondence table (noting
that we use a “short-cut” for element 3, since the stiffness of the element in the global X
direction is meaningless), we obtain the results in Table 4.5. The constraint conditions are
U1 = U7 = 0 and the applied force vector is



F1

M1

F2

M2

F3

M3

F4




=




R1

0
0
0

−10,000
0
R4




where we use R to indicate a reaction force. If we apply the constraint conditions and
solve the resulting 5 × 5 system of equations, we obtain the results

�1 = 9.3638(10−4) rad

v2 = −0.73811 mm

�2 = −0.0092538 rad

v3 = −5.5523 mm

�3 = −0.019444 rad
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(Note that we intentionally carry more significant decimal digits than necessary to avoid
“round-off” inaccuracies in secondary calculations.) To obtain the axial stress in member
BD, we utilize Equation 3.52 with � (3) = 	/2:

�BD = 69(103)

[
− 1

200

1

200

][
0 1 0 0
0 0 0 1

]



0
−0.7381

0
0




= 254.6 MPa

The positive result indicates tensile stress. 
The reaction forces are obtained by substitution of the computed displacements into

the first and seventh equations (the constraint equations):

R1 = 2.944(106)[9.3638(10−4)] − 19,627.2(−0.73811 )

+ 2.944(106)(−0.0092538 ) ≈ −10,000 N

R4 = −27,096(−0.73811 ) + 27,096(0) = 20,000 N

and within the numerical accuracy used in this example, the system is in equilibrium. The
reader is urged to check moment equilibrium about the left-hand node and note that, by
statics alone, the force in element 3 should be 20,000 N and the axial stress computed by
F/A is 254.6 MPa.

The bending stresses at nodes 1 and 2 in the flexure elements are computed via Equa-
tions 4.33 and 4.34, respectively, noting that for the square cross section ymax/min =
20 mm. For element 1,

�
(1)
x (x = 0) = ±20(207)(103)

[
6

3002
(−0.738 − 0) − 2

300
(−(2)0.00093 − 0.0092)

]

≈ 0

at node 1. Note that the computed stress at node 1 should be identically zero, since this
node is a pin joint and cannot support bending moment. 

For node 2 of element 1, we find

�
(1)
x (x = L ) = ±20(207)(103)

[
6

3002
(0 + 0.738) + 2

300
(−(2)0.0092 − 0.00093 )

]

≈ ±281.3 MPa

For element 2, we similarly compute the stresses at each node as

�(2)
x (x = 0) = ±20(207)(103)

×
[

6

3002
(−5.548 + 0.738) − 2

300
(−(2)0.0092 − 0.0194)

]
≈ ±281.3 MPa

�(2)
x (x = L) = ±20(207)(103)

×
[

6

3002
(−0.73811 + 5.5523) + 2

300
(−(2)0.019444 − 0.009538)

]
≈ 0 MPa

and the latter result is also to be expected, as the right end of the beam is free of bending
moment. We need to carefully observe here that the bending stress is the same at the
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juncture of the two flexure elements; that is, at node 2. This is not the usual situation in
finite element analysis. The formulation requires displacement and slope continuity but,
in general, no continuity of higher-order derivatives. Since the flexure element developed
here is based on a cubic displacement function, the element does not often exhibit mo-
ment (hence, stress) continuity. The convergence of derivative functions is paramount to
examining the accuracy of a finite element solution to a given problem. We must exam-
ine the numerical behavior of the derived variables as the finite element “mesh” is refined. 

4.7 FLEXURE ELEMENT WITH AXIAL LOADING
The major shortcoming of the flexure element developed so far is that force load-
ing must be transverse to the axis of the element. Effectively, this means that the
element can be used only in end-to-end modeling of linear beam structures.
If the element is formulated to also support axial loading, the applicability is
greatly extended. Such an element is depicted in Figure 4.11, which shows, in ad-
dition to the nodal transverse deflections and rotations, axial displacements at the
nodes. Thus, the element allows axial as well as transverse loading. It must be
pointed out that there are many ramifications to this seemingly simple extension.
If the axial load is compressive, the element could buckle. If the axial load is ten-
sile and significantly large, a phenomenon known as stress stiffening can occur.
The phenomenon of stress stiffening can be likened to tightening of a guitar
string. As the tension is increased, the string becomes more resistant to motion
perpendicular to the axis of the string.

The same effect occurs in structural members in tension. As shown in Fig-
ure 4.12, in a beam subjected to both transverse and axial loading, the effect of
the axial load on bending is directly related to deflection, since the deflection at
a specific point becomes the moment arm for the axial load. In cases of small
elastic deflection, the additional bending moment attributable to the axial loading
is negligible. However, in most finite element software packages, buckling and
stress stiffening analyses are available as options when such an element is used
in an analysis. (The reader should be aware that buckling and stress stiffening ef-
fects are checked only if the software user so specifies.) For the present purpose,
we assume the axial loads are such that these secondary effects are not of concern
and the axial loading is independent of bending effects.

ui ujji
�j�i

vi vj

Figure 4.11 Nodal displacements
of a beam element with axial
stiffness.
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F xF

MM

(a) (b)

F
F

M

v(x)

M(x)
M(x) � M � Fv(x)

Figure 4.12
(a) Beam with bending moment and axial load. (b) Section of beam, illustrating
how tensile load reduces bending moment, hence, “stiffening” the beam.

This being the case, we can simply add the spar element stiffness matrix to
the flexure element stiffness matrix to obtain the 6 × 6 element stiffness matrix
for a flexure element with axial loading as

[ke] =




AE

L

−AE

L
0 0 0 0

−AE

L

AE

L
0 0 0 0

0 0
12EIz

L3

6EIz

L2

−12EIz

L3

6EIz

L2

0 0
6EIz

L2

4EIz

L

−6EIz

L2

2EIz

L

0 0
−12EIz

L3

−6EIz

L2

12EIz

L3

−6EIz

L2

0 0
6EIz

L2

2EIz

L

−6EIz

L2

4EIz

L




(4.59)

which is seen to be simply

[ke] =
[

[kaxial] [0]
[0] [kflexure]

]
(4.60)

and is a noncoupled superposition of axial and bending stiffnesses.
Adding axial capability to the beam element eliminates the restriction that

such elements be aligned linearly and enables use of the element in the analysis
of planar frame structures in which the joints have bending resistance. For such
applications, orientation of the element in the global coordinate system must be
considered, as was the case with the spar element in trusses. Figure 4.13a depicts
an element oriented at an arbitrary angle 
 from the X axis of a global reference
frame and shows the element nodal displacements. Here, we use 
 to indicate
the orientation angle to avoid confusion with the nodal slope, denoted �. Fig-
ure 4.13b shows the assigned global displacements for the element, where again
we have adopted a single symbol for displacement with a numerically increasing
subscript from node to node. Before proceeding, note that it is convenient here to
reorder the element stiffness matrix given by Equation 4.59 so that the element
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displacement vector in the element reference frame is given as

{�} =




u1

v1

�1

u2

v2

�2




(4.61)

and the element stiffness matrix becomes

[ke] =




AE

L
0 0

−AE

L
0 0

0
12EIz

L3

6EIz

L2
0

−12EIz

L3

6EIz

L2

0
6EIz

L2

4EIz

L
0 −6EIz

L2

2EIz

L
−AE

L
0 0

AE

L
0 0

0
−12EIz

L3

−6EIz

L2
0

12EIz

L3

−6EIz

L2

0
6EIz

L2

2EIz

L
0

−6EIz

L2

4EIz

L




(4.62)

Using Figure 4.13, the element displacements are written in terms of the
global displacements as

u1 = U1 cos 
 + U2 sin 


v1 = −U1 sin 
 + U2 cos 


�1 = U3

u2 = U4 cos 
 + U5 sin 


v2 = −U4 sin 
 + U5 cos 


�2 = U6

(4.63)

(a)

v1

v2

u2

�1

�2

�u1

y x

(b)

U2

U3

U1

U6

U5

U4

Y

X

Figure 4.13
(a) Nodal displacements in the element coordinate system. (b) Nodal displacements
in the global coordinate system.
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(a)

20 in.

20 in.

10 lb/in.

O

CB

(b)

2

1

Y

U5

U4

U8

U7

U6 U9

U3

U2

X

U1

(c)

u2

�2

�1

v2

u1

v1

� � 	�2

Figure 4.14
(a) Frame of Example 4.4. (b) Global coordinate system and displacement
numbering. (c) Transformation of element 1.

Equations 4.63 can be written in matrix form as




u1

v1

�1

u2

v2

�2




=




cos 
 sin 
 0 0 0 0
−sin 
 cos 
 0 0 0 0

0 0 1 0 0 0
0 0 0 cos 
 sin 
 0
0 0 0 −sin
 cos 
 0
0 0 0 0 0 1







U1

U2

U3

U4

U5

U6




= [R]{U} (4.64)

where [R] is the transformation matrix that relates element displacements to
global displacements. In a manner exactly analogous to that of Section 3.3, it is
readily shown that the 6 × 6 element stiffness matrix in the global system is
given by

[Ke] = [R]T [ke][R] (4.65)

Owing to its algebraic complexity, Equation 4.65 is not expanded here to obtain
a general result. Rather, the indicated computations are best suited for specific
element characteristics and performed by computer program. 

Assembly of the system equations for a finite element model using the beam-
axial element is accomplished in an identical fashion to the procedures followed
for trusses as discussed in Chapter 3. The following simple example illustrates
the procedure.

The frame of Figure 4.14a is composed of identical beams having a 1-in. square cross
section and a modulus of elasticity of 10 × 106 psi. The supports at O and C are to be con-
sidered completely fixed. The horizontal beam is subjected to a uniform load of intensity
10 lb/in., as shown. Use two beam-axial elements to compute the displacements and
rotation at B.

EXAMPLE 4.4
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■ Solution
Using the specified data, The cross-sectional area is

A = 1(1) = 1 in.2

And the area moment of inertia about the z axis is

Iz = bh3/12 = 1/12 = 0.083 in.4

The characteristic axial stiffness is 

AE/L = 1(10 × 106)/20 = (5 × 105) lb/in.

and the characteristic bending stiffness is

EI z/L 3 = 10 × 106(0.083)/203 = 104.2 lb/in.

Denoting member OB as element 1 and member BC as element 2, the stiffness
matrices in the element coordinate systems are identical and given by

[
k (1)

] = [
k (2)

] =




5(105) 0 0 −5(105) 0 0
0 1,250.4 12,504 0 −1,250.4 12,504
0 12,504 166,720 0 −12,504 83,360

−5(105) 0 0 5(105) 0 0
0 −1,250.4 −12,504 0 1,250.4 −12,504
0 12,504 83,360 0 −12,504 166,720




Choosing the global coordinate system and displacement numbering as in Figure 4.14b,
we observe that element 2 requires no transformation, as its element coordinate system is
aligned with the global system. However, as shown in Figure 4.14c, element 1 requires
transformation. Using 
 = 	/2, Equations 4.64 and 4.65 are applied to obtain

[
K (1)

] =




1,250.4 0 −12,504 1,250.4 0 −12,504
0 5(105) 0 0 −5(105) 0

−12,504 0 166,720 12,504 0 83,360
1,250.4 0 12,504 1,250.4 0 12,504

0 −5(105) 0 0 5(105) 0
−12,504 0 83,360 12,504 0 166,720




Note particularly how the stiffness matrix of element 1 changes as a result of the 90°
rotation. The values of individual components in the stiffness matrix are unchanged. The
positions of the terms in the matrix are changed to reflect, quite simply, the directions of
bending and axial displacements of the element when described in the global (system)
coordinate system.

The displacement correspondence table is shown in Table 4.6 and the assembled sys-
tem stiffness matrix, by the direct assembly procedure, is in Table 4.7. Note, as usual, the
“overlap” of the element stiffness matrices at the displacements associated with the com-
mon node. At these positions in the global stiffness matrix, the stiffness terms from the
individual element stiffness matrices are additive.
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Table 4.6 Displacement Correspondence

Global Element 1 Element 2

1 1 0
2 2 0
3 3 0
4 4 1
5 5 2
6 6 3
7 0 4
8 0 5
9 0 6

Table 4.7 System Stiffness Matrix

[K ] =




1,250.4 0 −12,504 1,250.4 0 −12,504 0 0 0
0 500,000 0 0 −500,000 0 0 0 0

−12,504 0 166,720 12,504 0 833,360 0 0 0
1,250.4 0 12,504 501,250.4 0 12,504 −500,000 0 0

0 −500,000 0 0 501,250.4 12,504 0 −1,250.4 12,504
−12,504 0 83,360 12,504 12,504 333,440 0 −12,504 83,360

0 0 0 −500,000 0 0 500,000 0 0
0 0 0 0 −1,250.4 −12,504 0 1,250.4 −12,504
0 0 0 0 12,504 83,360 0 −12,504 166,720




Using the system stiffness matrix, the assembled system equations are

[K ]




U1

U2

U3

U4

U5

U6

U7

U8

U9




=




RX 1

RY 1

MR1

0
−100

−333.3
RX 3

RY 3 − 100
MR3 + 333.3




where we denote the forces at nodes 1 and 3 as reaction components, owing to the dis-
placement constraints U1 = U2 = U3 = U7 = U8 = U9 = 0. Taking the constraints into
account, the equations to be solved for the active displacements are then


 501,250.4 0 12,504

0 501,250.4 12,504
12,504 12,504 333,440







U4

U5

U6


 =




0
−100
−16.7



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Simultaneous solution gives the displacement values as

U4 = 2.47974 (10−5) in.

U5 = −1.74704 (10−4) in.

U6 = −9.94058 (10−4) rad

As usual, the reaction components can be obtained by substituting the computed dis-
placements into the six constraint equations.

For the beam element with axial capability, the stress computation must take into
account the superposition of bending stress and direct axial stress. For element 1, for
example, we use Equation 4.63 with 
 = 	/2 to compute the element displacement as




u1

v1

�1

u2

v2

�2




=




0 1 0 0 0 0
−1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1







U1

U2

U3

U4

U5

U6




=




0
0
0

−1.74704(10−4)
−2.47974(10−5)
−9.94058(10−4)




The bending stress is computed at nodes 1 and 2 via Equations 4.33 and 4.34 as

�x (x = 0) = ±0.5(10)(106)

[
6

202
(−2.47974 )(10−5) − 2

20
(−9.94058 (10−4)

]

= ±495.2 psi

�x (x = L ) = ±0.5(10)(106)

[
6

202
(2.47974 )(10−5) + 2

20
(2)(−9.94058 )(10−4)

]

= ±992.2 psi

and the axial stress is

�axial = 10(106)
−1.74704 (10−4)

20
= −87.35 psi

Therefore, the largest stress magnitude occurs at node 2, at which the compressive axial
stress adds to the compressive portion of the bending stress distribution to give

� = 1079 .6 psi (compressive)

4.8 A GENERAL THREE-DIMENSIONAL
BEAM ELEMENT

A general three-dimensional beam element is capable of both axial and torsional
deflections as well as two-plane bending. To examine the stiffness characteristics
of such an element and obtain the element stiffness matrix, we first extend the
beam-axial element of the previous section to include two-plane bending, then
add torsional capability.

Figure 4.15a shows a beam element with an attached three-dimensional ele-
ment coordinate system in which the x axis corresponds to the longitudinal axis
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x

y

z

(a)

z

x
21

w2w1

�y2

qz(x)

�y1

(b)

Figure 4.15
(a) Three-dimensional beam element. (b) Nodal displacements in
element xz plane.

of the beam and is assumed to pass through the centroid of the beam cross sec-
tion. The y and z axes are assumed to correspond to the principal axes for area
moments of inertia of the cross section [1]. If this is not the case, treatment of
simultaneous bending in two planes and superposition of the results as in the
following element development will not produce correct results [2].

For bending about the z axis (i.e., the plane of bending is the xy plane), the
element stiffness matrix is given by Equation 4.48. For bending about the y axis,
the plane of bending is the xz plane, as in Figure 4.15b, which depicts a beam
element defined by nodes 1 and 2 and subjected to a distributed load qz(x ) shown
acting in the positive z direction. Nodal displacements in the z direction are de-
noted w1 and w2, while nodal rotations are �y1 and �y2. For this case, it is neces-
sary to add the axis subscript to the nodal rotations to specifically identify the
axis about which the rotations are measured. In this context, the rotations corre-
sponding to xy plane bending henceforth are denoted �z1 and �z2. It is also im-
portant to note that, in Figure 4.15b, the y axis is perpendicular to the plane of the
page with the positive sense into the page. Therefore, the rotations shown are
positive about the y axis per the right-hand rule. Noting the difference in the pos-
itive sense of rotation relative to the linear displacements, a development analo-
gous to that used for the flexure element in Sections 4.3 and 4.4 results in the
element stiffness matrix for xz plane bending as

[ke]xz = EIy

L3




12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2


 (4.66)

The only differences between the xz plane bending stiffness matrix and that for
xy plane bending are seen to be sign changes in the off-diagonal terms and the
fact that the characteristic stiffness depends on the area moment of inertia Iy.

Combining the spar element stiffness matrix, the xy plane flexure stiffness
matrix, and the xz plane stiffness matrix given by Equation 4.60, the element
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T2

G, J

T1

x

L

(a)

Mx2

Mx1

x

1

2

(b)

Figure 4.16
(a) Circular cylinder subjected to torsion. (b) Torsional finite element notation.

equilibrium equations for a two-plane bending element with axial stiffness are
written in matrix form as


 [kaxial] [0] [0]

[0] [kbending]xy [0]
[0] [0] [kbending]xz







u1

u2

v1

�z1

v2

�z2

w1

�y1

w2

�y2




=




fx1

fx2

fy1

Mz1

fy2

Mz2

fz1

My1

fz2

My2




(4.67)

where the 10 × 10 element stiffness matrix has been written in the shorthand form

[ke] =

 [kaxial] [0] [0]

[0] [kbending]xy [0]
[0] [0] [kbending]xz


 (4.68)

The equivalent nodal loads corresponding to a distributed load are computed on
the basis of work equivalence, as in Section 4.6. For a uniform distributed load
qz(x ) = qz , the equivalent nodal load vector is found to be




fqz1

Mqz1

fqz2

Mqz2




=




qz L

2
−qz L2

12
qz L

2
qz L2

12




(4.69)

The addition of torsion to the general beam element is accomplished with
reference to Figure 4.16a, which depicts a circular cylinder subjected to torsion
via twisting moments applied at its ends. A corresponding torsional finite element
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is shown in Figure 4.16b, where the nodes are 1 and 2, the axis of the cylinder is
the x axis, and twisting moments are positive according to the right-hand rule.
From elementary strength of materials, it is well known that the angle of twist per
unit length of a uniform, elastic circular cylinder subjected to torque T is given by

� = T

JG
(4.70)

where J is polar moment of inertia of the cross-sectional area and G is the shear
modulus of the material. As the angle of twist per unit length is constant, the total
angle of twist of the element can be expressed in terms of the nodal rotations and
twisting moments as

�x2 − �x1 = TL

JG
(4.71)

or

T = JG

L
(�x2 − �x1) = kT (�x2 − �x1) (4.72)

Comparison of Equation 4.72 with Equation 2.2 for a linearly elastic spring and
consideration of the equilibrium condition Mx1 + Mx2 = 0 lead directly to the
element equilibrium equations:

JG

L

[
1 −1

−1 1

] {
�x1

�x2

}
=

{
Mx1

Mx2

}
(4.73)

so the torsional stiffness matrix is

[ktorsion] = JG

L

[
1 −1

−1 1

]
(4.74)

While this development is, strictly speaking, applicable only to a circular cross
section, an equivalent torsional stiffness Jeq G/L is known for many common
structural cross sections and can be obtained from standard structural tables or
strength of materials texts.

Adding the torsional characteristics to the general beam element, the element
equations become




[kaxial] [0] [0] [0]
[0] [kbending]xy [0] [0]
[0] [0] [kbending]xz [0]
[0] [0] [0] [ktorsion]







u1

u2

v1

�z1

v2

�z2

w1

�y1

w2

�y2

�x1

�x2




=




fx1

fx2

fy1

Mz2

fy2

Mz2

fz1

My1

fz2

My2

Mx1

Mx2




(4.75)
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and the final stiffness matrix for a general 3-D beam element is observed to be a
12 × 12 symmetric matrix composed of the individual stiffness matrices repre-
senting axial loading, two-plane bending, and torsion.

The general beam element can be utilized in finite element analyses of three-
dimensional frame structures. As with most finite elements, it is often necessary
to transform the element matrices from the element coordinate system to the
global coordinates. The transformation procedure is quite similar to that dis-
cussed for the bar and two-dimensional beam elements, except, of course, for the
added algebraic complexity arising from the size of the stiffness matrix and
certain orientation details required.

4.9 CLOSING REMARKS
In this chapter, finite elements for beam bending are formulated using elastic
flexure theory from elementary strength of materials. The resulting elements are
very useful in modeling frame structures in two or three dimensions. A general
three-dimensional beam element including axial, bending, and torsional effects
is developed by, in effect, superposition of a spar element, two flexure elements,
and a torsional element. 

In development of the beam elements, stiffening of the elements owing to
tensile loading, the possibility of buckling under compressive axial loading, and
transverse shear effects have not been included. In most commercial finite
element software packages, each of these concerns is an option that can be taken
into account at the user’s discretion.
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PROBLEMS
4.1 Two identical beam elements are connected at a common node as shown in

Figure P4.1. Assuming that the nodal displacements vi , �i are known, use
Equation 4.32 to show that the normal stress �x is, in general, discontinuous
at the common element boundary (i.e., at node 2). Under what condition(s)
would the stress be continuous?

Figure P4.1

1 2 3
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4.2 For the beam element loaded as shown in Figure P4.2, construct the shear force
and bending moment diagrams. What is the significance of these diagrams with

respect to Equations 4.10, 4.17, and the relation V = dM

dx
from strength of

materials theory?

Figure P4.2

4.3 For a uniformly loaded beam as shown in Figure P4.3, the strength of materials
theory gives the maximum deflection as

vmax = − 5qL4

384EI z

at x = L/2. Treat this beam as a single finite element and compute the maximum
deflection. How do the values compare?

Figure P4.3

4.4 The beam element shown in Figure P4.4 is subjected to a linearly varying load
of maximum intensity qo. Using the work-equivalence approach, determine the
nodal forces and moments.

Figure P4.4

4.5 Use the results of Problem 4.4 to calculate the deflection at node 2 of the beam
shown in Figure P4.5 if the beam is treated as a single finite element.

Figure P4.5

qo

y

x
E, Iz, L

1 2

qo
y

x
L

q

y

x

L

L
F
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4.6 For the beam element of Figure P4.5, compute the reaction force and moment at
node 1. Compute the maximum bending stress assuming beam height is 2h . How
does the stress value compare to the maximum stress obtained by the strength of
materials approach?

4.7 Repeat Problem 4.5 using two equal length elements. For this problem, let
E = 30 × 106 psi, Iz = 0.1 in.4, L = 10 in., qo = 10 lb/in.

4.8 Consider the beam shown in Figure P4.8. What is the minimum number of
elements that can be used to model this problem? Construct the global nodal load
vector corresponding to your answer.

Figure P4.8

4.9 What is the justification for writing Equation 4.36 in the form of Equation 4.37?
4.10–4.15 For each beam shown in the associated figure, compute the deflection at

the element nodes. The modulus of elasticity is E = 10 × 106 psi and the
cross section is as shown in each figure. Also compute the maximum bending
stress. Use the finite element method with the minimum number of elements
for each case.

Figure P4.10

Figure P4.11

Figure P4.12

45 N/m

0.3 m0.3 m

40 mm

10 mm

30 mm

10 lb/in.

10 in. 10 in.
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Figure P4.13

Figure P4.14

Figure P4.15

4.16 The tapered beam element shown in Figure P4.16 has uniform thickness t and
varies linearly in height from 2h to h. Beginning with Equation 4.37, derive the
strain energy expression for the element in a form similar to Equation 4.39.

Figure P4.16

4.17 Use the result of Problem 4.16 to derive the value of component k11 of the
element stiffness matrix.

4.18 The complete stiffness matrix for the tapered element of Figure P4.16 is given by

[k] = Eth3

60L3




243 156L −243 87L
156L 56L2 −156L 42L2

−243 −156L 243 −87L
87L 42L2 −87L 45L2




y

x

L

2h h

10 in.10 in. 20 in.

200 lb 300 lb

0.25 in.

2 in.

2 in.

10 in. 8 in.8 in.

500 lb 200 lb

400 in.-lb
D1�1.5 in. D2�1.0 in.

D

18 in. 6 in.
2 in.

200 lb

1 in.

400 lb/in.
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Figure P4.18

a. Using the given stiffness matrix with E = 10(106), compute the deflection
of node 2 for the tapered element loaded as shown in Figure P4.18a.

b. Approximate the tapered beam using two straight elements, as in
Figure P4.18b, and compute the deflection.

c. How do the deflection results compare?
d. How do the stress computations compare?

4.19 The six equilibrium equations for a beam-axial element in the element coordinate
system are expressed in matrix form as

[ke] {�} = { fe}
with {�} as given by Equation 4.61, [ke] by Equation 4.62, and { fe} as the nodal
force vector

{ fe} = [ f1x f1y M1 f2x f2y M2]T

For an element oriented at an arbitrary angle 
 relative to the global X axis,
convert the equilibrium equations to the global coordinate system and verify
Equation 4.65.

4.20 Use Equation 4.63 to express the strain energy of a beam-axial element in terms
of global displacements. Apply the principle of minimum potential energy to
derive the expression for the element equilibrium equations in the global
coordinate system. (Warning: This is algebraically tedious.)

4.21 The two-dimensional frame structure shown in Figure P4.21 is composed of
two 2 × 4 in. steel members (E = 10 × 106 psi), and the 2-in. dimension is
perpendicular to the plane of loading. All connections are treated as welded
joints. Using two beam-axial elements and the node numbers as shown,
determine

(b)

6 in. 6 in.

0.875 in.

t � 0.25 in.

10 lb

0.625 in.

(a)

12 in.

1 in. 0.5 in.

t � 0.25 in.

10 lb
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Figure P4.21

a. The global stiffness matrix.
b. The global load vector.
c. The displacement components of node 2.
d. The reaction forces and moments at nodes 1 and 3.
e. Maximum stress in each element.

4.22 Repeat Problem 4.21 for the case in which the connection at node 2 is a
pin joint.

4.23 The frame structure shown in Figure P4.23 is the support structure for a hoist
located at the point of application of load W. The supports at A and B are
completely fixed. Other connections are welded. Assuming the structure to be
modeled using the minimum number of beam-axial elements:

Figure P4.23

a. How many elements are needed?
b. What is the size of the assembled global stiffness matrix?
c. What are the constraint (boundary) conditions?
d. What is the size of the reduced global stiffness matrix after application of the

constraint conditions?
e. Assuming a finite element solution is obtained for this problem, what steps

could be taken to judge the accuracy of the solution?

W

A B

30 in.

20 lb/in.

1500 in.� lb3
2

1

1200 lb

30 in.
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4.24 Repeat Problem 4.23 for the frame structure shown in Figure P4.24.

Figure P4.24

4.25 Verify Equation 4.69 by direct calculation.
4.26 The cantilevered beam depicted in Figure P4.26 is subjected to two-plane

bending. The loads are applied such that the planes of bending correspond to the
principal moments of inertia. Noting that no axial or torsional loadings are
present, model the beam as a single element (that is, construct the 8 × 8 stiffness
matrix containing bending terms only) and compute the deflections of the free
end, node 2. Determine the exact location and magnitude of the maximum
bending stress. (Use E = 207 GPa.)

Figure P4.26

4.27 Repeat Problem 4.26 for the case in which the concentrated loads are replaced
by uniform distributed loads qy = 6 N/cm and qz = 4 N/cm acting in the positive
coordinate directions, respectively.

1.5 m 500 N

300 N

y

z

x
z

y

3 cm

6 cm

A

B
(pin joint)

W
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5.1 INTRODUCTION
Chapters 2, 3, and 4 introduced some of the basic concepts of the finite element
method in terms of the so-called line elements. The linear elastic spring, the bar
element and the flexure element are line elements because structural properties
can be described in terms of a single spatial variable that identifies position along
the longitudinal axis of the element. The displacement-force relations for the line
elements are straightforward, as these relations are readily described using only
the concepts of elementary strength of materials. To extend the method of finite
element analysis to more general situations, particularly nonstructural appli-
cations, additional mathematical techniques are required. In this chapter, the
method of weighted residuals is described in general and Galerkin’s method of
weighted residuals [1] is emphasized as a tool for finite element formulation for
essentially any field problem governed by a differential equation.

5.2 METHOD OF WEIGHTED RESIDUALS
It is a basic fact that most practical problems in engineering are governed by
differential equations. Owing to complexities of geometry and loading, rarely
are exact solutions to the governing equations possible. Therefore, approximate
techniques for solving differential equations are indispensable in engineering
analysis. Indeed, the finite element method is such a technique. However, the
finite element method is based on several other, more-fundamental, approximate
techniques, one of which is discussed in detail in this section and subsequently
applied to finite element formulation.

The method of weighted residuals (MWR) is an approximate technique for
solving boundary value problems that utilizes trial functions satisfying the

C H A P T E R 5


