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6.1 INTRODUCTION

The structural elements introduced in the previous chapters were formulated on
the basis of known principles from elementary strength of materials theory. We
have also shown, by example, how Galerkin’s method can be applied to a heat
conduction problem. This chapter examines the requirements for interpolation
functions in terms of solution accuracy and convergence of a finite element
analysis to the exact solution of a general field problem. Interpolation functions
for various common element shapes in one, two, and three dimensions are de-
veloped, and these functions are used to formulate finite element equations for
various types of physical problems in the remainder of the text.

With the exception of the beam element, all the interpolation functions dis-
cussed in this chapter are applicable to finite elements used to obtain solutions
to problems that are said to be C°-continuous. This terminology means that,
across element boundaries, only the zeroth-order derivatives of the field
variable (i.e., the field variable itself) are continuous. On the other hand, the
beam element formulation is such that the element exhibits C'-continuity, since
the first derivative of the transverse displacement (i.e., slope) is continuous
across element boundaries, as discussed previously and repeated later for em-
phasis. In general, in a problem having C"-continuity, derivatives of the field
variable up to and including nth-order derivatives are continuous across ele-
ment boundaries.
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6.2 COMPATIBILITY AND COMPLETENESS
REQUIREMENTS

The line elements (spring, truss, beam) illustrate the general procedures used to
formulate and solve a finite element problem and are quite useful in analyzing
truss and frame structures. Such structures, however, tend to be well defined in
terms of the number and type of elements used. In most engineering problems, the
domain of interest is a continuous solid body, often of irregular shape, in which
the behavior of one or more field variables is governed by one or more partial dif-
ferential equations. The objective of the finite element method is to discretize the
domain into a number of finite elements for which the governing equations are
algebraic equations. Solution of the resulting system of algebraic equations then
gives an approximate solution to the problem. As with any approximate tech-
nique, the question, How accurate is the solution? must be addressed.

In finite element analysis, solution accuracy is judged in terms of conver-
gence as the element “mesh” is refined. There are two major methods of mesh
refinement. In the first, known as h-refinement, mesh refinement refers to the
process of increasing the number of elements used to model a given domain, con-
sequently, reducing individual element size. In the second method, p-refinement,
element size is unchanged but the order of the polynomials used as interpolation
functions is increased. The objective of mesh refinement in either method is to
obtain sequential solutions that exhibit asymptotic convergence to values repre-
senting the exact solution. While the theory is beyond the scope of this book,
mathematical proofs of convergence of finite element solutions to correct solu-
tions are based on a specific, regular mesh refinement procedure defined in [1].
Although the proofs are based on regular meshes of elements, irregular or un-
structured meshes (such as in Figure 1.7) can give very good results. In fact, use
of unstructured meshes is more often the case, since (1) the geometries being
modeled are most often irregular and (2) the automeshing features of most finite
element software packages produce irregular meshes.

An example illustrating regular h-refinement as well as solution convergence
is shown in Figure 6.1a, which depicts a rectangular elastic plate of uniform
thickness fixed on one edge and subjected to a concentrated load on one corner.

Tmax Exact

4 16 64
Number of elements

(a) (d) (© (d) (e)

Figure 6.1 Example showing convergence as element mesh is refined.
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This problem is modeled using rectangular plane stress elements (Chapter 9) and
three meshes used in sequence, as shown (Figure 6.1b—6.1d). Solution conver-
gence is depicted in Figure 6.le in terms of maximum normal stress in the
x direction. For this example, the exact solution is taken to be the maximum
bending stress computed using elementary beam theory. The true exact solution
is the plane stress solution from the theory of elasticity. However, the maximum
normal stress is not appreciably changed in the elasticity solution.

The need for convergence during regular mesh refinement is rather clear.
If convergence is not obtained, the engineer using the finite element method
has absolutely no indication whether the results are indicative of a meaningful
approximation to the correct solution. For a general field problem in which the
field variable of interest is expressed on an element basis in the discretized
form

M
b,y 2) = Y Nilx, y, D)y (6.1)
i=1
where M is the number of element degrees of freedom, the interpolation functions
must satisfy two primary conditions to ensure convergence during mesh refine-
ment: the compatibility and completeness requirements, described as follows.

6.2.1 Compatibility

Along element boundaries, the field variable and its partial derivatives up to one
order less than the highest-order derivative appearing in the integral formula-
tion of the element equations must be continuous. Given the discretized repre-
sentation of Equation 6.1, it follows that the interpolation functions must meet
this condition, since these functions determine the spatial variation of the field
variable.

Recalling the application of Galerkin’s method to the formulation of the
truss element equations, the first derivative of the displacement appears in Equa-
tion 5.34. Therefore, the displacement must be continuous across element bound-
aries, but none of the displacement derivatives is required to be continuous
across such boundaries. Indeed, as observed previously, the truss element is a
constant strain element, so the first derivative is, in general, discontinuous at the
boundaries. Similarly, the beam element formulation, Equation 5.49, includes
the second derivative of displacement, and compatibility requires continuity of
both the displacement and the slope (first derivative) at the element boundaries.

In addition to satisfying the criteria for convergence, the compatibility con-
dition can be given a physical meaning as well. In structural problems, the
requirement of displacement continuity along element boundaries ensures that
no gaps or voids develop in the structure as a result of modeling procedure. Sim-
ilarly the requirement of slope continuity for the beam element ensures that no
“kinks” are developed in the deformed structure. In heat transfer problems, the
compatibility requirement prevents the physically unacceptable possibility of
jump discontinuities in temperature distribution.
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6.2.2 Completeness

In the limit as element size shrinks to zero in mesh refinement, the field variable
and its partial derivatives up to, and including, the highest-order derivative
appearing in the integral formulation must be capable of assuming constant
values. Again, because of the discretization, the completeness requirement is
directly applicable to the interpolation functions.

The completeness requirement ensures that a displacement field within a
structural element can take on a constant value, representing rigid body motion,
for example. Similarly, constant slope of a beam element represents rigid body ro-
tation, while a state of constant temperature in a thermal element corresponds to
no heat flux through the element. In addition to the rigid body motion considera-
tion, the completeness requirement also ensures the possibility of constant values
of (at least) first derivatives. This feature assures that a finite element is capable of
constant strain, constant heat flow, or constant fluid velocity, for example.

The foregoing discussion of convergence and requirements for interpolation
functions is by no means rigorous nor greatly detailed. References [1-5] lead the
interested reader to an in-depth study of the theoretical details. The purpose here
is to present the requirements and demonstrate application of those requirements
to development of appropriate interpolation functions to a number of commonly
used elements of various shape and complexity.

6.3 POLYNOMIAL FORMS:
ONE-DIMENSIONAL ELEMENTS

As illustrated by the methods and examples of Chapter 5, formulation of finite
element characteristics requires differentiation and integration of the interpola-
tion functions in various forms. Owing to the simplicity with which polynomial
functions can be differentiated and integrated, polynomials are the most com-
monly used interpolation functions. Recalling the truss element development of
Chapter 2, the displacement field is expressed via the first-degree polynomial

u(x) = ag+ a1x (6.2)
In terms of nodal displacement, Equation 6.2 is determined to be equivalent to
u(x) = (1 — i)ul + iuz (6.3)

L L

The coefficients ay and a; are obtained by applying the nodal conditions
u(x =0) =u; and u(x = L) = u,. Then, collecting coefficients of the nodal
displacements, the interpolation functions are obtained as

N=1-% N =2 (6.4)
1= 3 2=7 .
Equation 6.3 shows that, if u; = u,, the element displacement field corre-

sponds to rigid body motion and no straining of the element occurs. The first
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derivative of Equation 6.3 with respect to x yields a constant value that, as we
already know, represents the element axial strain. Hence, the truss element satis-
fies the completeness requirement, since both displacement and strain can take
on constant values regardless of element size. Also note that the truss element
satisfies the compatibility requirement automatically, since only displacement is
involved, and displacement compatibility is enforced at the nodal connections
via the system assembly procedure.

In light of the completeness requirement, we can now see that choice of the
linear polynomial representation of the displacement field, Equation 6.2, was not
arbitrary. Inclusion of the constant term a( ensures the possibility of rigid body
motion, while the first-order term provides for a constant first derivative. Further,
only two terms can be included in the representation, as only two boundary con-
ditions have to be satisfied, corresponding to the two element degrees of free-
dom. Conversely, if the linear term were to be replaced by a quadratic term a,x2,
for example, the coefficients could still be obtained to mathematically satisfy the
nodal displacement conditions, but constant first derivative (other than a value of
zero) could not be obtained under any circumstances.

Determination of the interpolation functions for the truss element, as just
described, is quite simple. Nevertheless, the procedure is typical of that used to
determine the interpolation functions for any element in which polynomials
are utilized. Prior to examination of more complex elements, we revisit the
development of the beam element interpolation functions with specific reference
to the compatibility and completeness requirements. Recalling from Chapter 5
that the integral formulation (via Galerkin’s method, Equation 5.49 for the two-
dimensional beam element includes the second derivative of displacement, the
compatibility condition requires that both displacement and the first derivative of
displacement (slope) be continuous at the element boundaries. By including
the slopes at element nodes as nodal variables in addition to nodal displacements,
the compatibility condition is satisfied via the system assembly procedure. As we
have seen, the beam element then has 4 degrees of freedom and the displacement
field is represented as the cubic polynomial

v(x) = ao + arx + arx’ + aszx> (6.5)

which is ultimately to be expressed in terms of interpolation functions and nodal
variables as

V(x) = Nivi + NaBy + N3vp + Naby =[Ny No N3 N4 (6.6)

Rewriting Equation 6.5 as the matrix product,

ao
ap
az
as

vix) =[1 x x? x3]

(6.7)
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the nodal conditions

vix =0) =
dv |
_ =6
dx IA:O
(6.8)
vix=L)=w
dv| o
dx }X:L -
are applied to obtain
ap
a
=000 0, (6.9)
as
ao
a
6,=[0 1 0 0] as (6.10)
az
ap
a
vw=I[l L L* L7 “ (6.11)
as
ao
=100 1 2L 3L% Z; (6.12)
as
The last four equations are combined into the equivalent matrix form
Vi 1 0 0 0 ap
(‘)1 _ 0 1 0 0 ay
%) - 1 L L2 L3 an (613)
0 0 1 2L 3L%]la;

The system represented by Equation 6.13 can be solved for the polynomial coef-
ficients by inverting the coefficient matrix to obtain

1 0 0 0
a0 0 1 0 0 v
3 2 3 1 0
ai _ - _ = - _ 1
ay - LZ L2 L Vo (614)
as 2 1 2 1 )
L3 L2 13 L2
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The interpolation functions can now be obtained by substituting the coeffi-
cients given by Equation 6.14 into Equation 6.5 and collecting coefficients of the
nodal variables. However, the following approach is more direct and alge-
braically simpler. Substitute Equation 6.14 into Equation 6.7 and equate to Equa-
tion 6.6 to obtain

1 0 0 0
0 1 0 0 Vi
3 2 3 1 0
- S S I A S 1
vix) =[1 x x= x7] B 7 [P 7 b
2 1 2 1 V)
L 2 L3 L2
Vi
= M Ny N (6.15)
2
0,
The interpolation functions are
1 0 0 0 ]
0 1 0 0
5 5 3 2 3 1
[N1 N2 N3 N4]=[1 X X X] _E - E _Z (616)
2 1 2 1
L L2 3 L

and note that the results of Equation 6.16 are identical to those shown in
Equation 4.26.

The reader may wonder why we repeat the development of the beam element
interpolation functions. The purpose is twofold: (1) to establish a general proce-
dure for use with polynomial representations of the field variable and (2) to re-
visit the beam element formulation in terms of compatibility and completeness
requirements. The general procedure begins with expressing the field variable as
a polynomial of order one fewer than the number of degrees of freedom exhib-
ited by the element. Using the examples of the truss and beam elements, it has
been shown that a two-node element may have 2 degrees of freedom, as in the
truss element where only displacement continuity is required, or 4 degrees of
freedom, as in the beam element where slope continuity is required. Next the
nodal (boundary) conditions are applied and the coefficients of the polynomial
are computed accordingly. Finally, the polynomial coefficients are substituted
into the field variable representation in terms of nodal variables to obtain the
explicit form of the interpolation functions.

Examination of the completeness condition for the beam element requires a
more-detailed thought process. The polynomial representation of the displace-
ment field is such that only the third derivative is guaranteed to have a constant
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value, since any lower-order derivative involves the spatial variable. However, if
we examine the conditions under which the element undergoes rigid body trans-
lation, for example, we find that the nodal forces must be of equal magnitude and
the same sense and the applied nodal moments must be zero. Also, for rigid body
translation, the slopes at the nodes of the element are zero. In such case, the sec-
ond derivative of deflection, directly proportional to bending moment, is zero
and the shear force, directly related to the third derivative of deflection, is con-
stant. (Simply recall the shear force and bending moment relations from the
mechanics of materials theory.) Therefore, the field variable representation as a
cubic polynomial allows rigid body translation. In the case of the beam element,
we must also verify the possibility of rigid body rotation. This consideration, as
well as those of constant bending moment and shear force, is left for end-of-
chapter problems.

6.3.1 Higher-Order One-Dimensional Elements

In formulating the truss element and the one-dimensional heat conduction ele-
ment (Chapter 5), only line elements having a single degree of freedom at each
of two nodes are considered. While quite appropriate for the problems consid-
ered, the linear element is by no means the only one-dimensional element that
can be formulated for a given problem type. Figure 6.2 depicts a three-node line
element in which node 2 is an interior node. As mentioned briefly in Chapter 1,
an interior node is not connected to any other node in any other element in the
model. Inclusion of the interior node is a mathematical tool to increase the order
of approximation of the field variable. Assuming that we deal with only 1 degree
of freedom at each node, the appropriate polynomial representation of the field
variable is

d(x) = ag + ax + arx’ 6.17)

and the nodal conditions are

dlx =0) =
d)(x = 5) = (6.18)
2
dlx = L) =ds

44
1 2 3 X

Figure 6.2 A three-node
line element. Node 2 is an
interior node.
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Applying the general procedure outlined previously in the context of the beam
element, we apply the nodal (boundary) conditions to obtain

o 1 0 O
1 2 aop
{4)2} =11 LL {al } (6.19)
b3 24 a
1 L L?

from which the interpolation functions are obtained via the following sequence

1 0 0
ap 3 4 1 (’)1
{m}= I I I {@} (6200
ar 2 4 2 b
2 L2 L2
1 0 0
3 4 1 ¢
dx)=[ x x| L L L {@}
2 4 2 ¢

o)
=[N N N3]{ b2 } (6.20b)
b3

3 2,
Nl(x)zl—zx—l—ﬁx

4x X
Ny(x) = —(1 — —) (6.20c)

x [ 2x
N3()C)=Z T—l

Note that each interpolation function varies quadratically in x and has value
of unity at its associated node and value zero at the other two nodes, as illustrated
in Figure 6.3. These observations lead to a shortcut method of concocting the
interpolation functions for a C° line element as products of monomials as fol-
lows. Let s = x/L such that s; = 0,5, = 1/2, 53 = 1 are the nondimensional
coordinates of nodes 1, 2, and 3, respectively. Instead of following the formal
procedure used previously, we hypothesize, for example,

Ni(s) = Ci(s — s2)(s — 53) (6.21)

where C| is a constant. The first monomial term ensures that N; has a value of zero
at node 2 and the second monomial term ensures the same at node 3. Therefore,
we need to determine only the value of C; to provide unity value at node 1.
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Figure 6.3 Spatial variation of interpolation
functions for a three-node line element.

Substituting s = 0, we obtain
Nis=0)=1= C1<O— %)(0— D
yielding C; = 2 and
Ni(s) = 2<s — %)(s —1)
Following similar logic and procedure shows that

Ny(s) = —4s(s — 1)

N3(s) = 2s <s — %)

© The McGraw-Hill
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(6.22)

(6.23)

(6.24)

(6.25)

Substituting s = x/L in Equations 6.23-6.25 and expanding shows that the
results are identical to those given in Equation 6.20. The monomial-based proce-
dure can be extended to line elements of any order as illustrated by the following

example.

Use the monomial method to obtain the interpolation functions for the four-node line

element shown in Figure 6.4.

L L L
i e |
1 2 3 4 X
Figure 6.4 Four-node line
element of Example 6.1.
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H Solution
Usings = x/L,wehaves, =0,s, = 1/3,s; =2/3,and s, = 1. The monomial terms of
interest are s, s — 1/3, s — 2/3, and s — 1. The monomial products

mow=afs-3)(- 3o
1(s) = 1S—§ S—g (s —=1)

Ny(s) = C2s<s — %) (s —1)

N3(s) = C3s<s — %) (s—=1)

) =€usls - 5)(+-5)
4(s) = Cys S—g S—g

automatically satisfy the required zero-value conditions for each interpolation function.
Hence, we need evaluate only the constants C; such that N;(s = s5;) = 1,i = 1, 4. Apply-
ing each of the four unity-value conditions, we obtain

wo==o( (e
L()1=e )0
NORECIBIE)
== ()

27 27

27( )
No(s) = —s|s—=)(s—=1)
2

I B 27( 1) q
X(S)——?S S—g (s—=1
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6.4 POLYNOMIAL FORMS:
GEOMETRIC ISOTROPY

The previous discussion of one-dimensional (line) elements revealed that the
polynomial representation of the field variable must contain the same number of
terms as the number of nodal degrees of freedom. In addition, to satisfy the com-
pleteness requirement, the polynomial representation for an M-degree of free-
dom element should contain all powers of the independent variable up to and
including M — 1. Another way of stating the latter requirement is that the poly-
nomial is complete. In two and three dimensions, polynomial representations of
the field variable, in general, satisfy the compatibility and completeness require-
ments if the polynomial exhibits the property known as geometric isotropy [1]. A
mathematical function satisfies geometric isotropy if the functional form does
not change under a translation or rotation of coordinates. In two dimensions, a
complete polynomial of order M can be expressed as

2
N t

Py(x,y) =Y awx'y’ i+ j<M (6.26)
k=0

where N (f) =[(M + 1)(M + 2)]/2 is the total number of terms. A complete
polynomial as expressed by Equation 6.26 satisfies the condition of geometric
isotropy, since the two variables, x and y, are included in each term in similar
powers. Therefore, a translation or rotation of coordinates is not prejudicial to
either independent variable.

A graphical method of depicting complete two-dimensional polynomials is
the so-called Pascal triangle shown in Figure 6.5. Each horizontal line represents
a polynomial of order M. A complete polynomial of order M must contain all
terms shown above the horizontal line. For example, a complete quadratic poly-
nomial in two dimensions must contain six terms. Hence, for use in a finite ele-
ment representation of a field variable, a complete quadratic expression requires
six nodal degrees of freedom in the element. We examine this particular case in
the context of triangular elements in the next section.

In addition to the complete polynomials, incomplete polynomials also
exhibit geometric isotropy if the incomplete polynomial is symmetric. In this
context, symmetry implies that the independent variables appear as “equal and

1

X .
INEIE A Linear
x2 \\ Xy // y?
—~ Quadratic
3 N L2, Y o2 0 3
X N X7y Xy y .
N v Cubic
4 3 2.2 3 4
X x7y X /Xy’ ) .
Y NFD Y J Quartic

v

Figure 6.5 Pascal triangle for polynomials
in two dimensions.
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opposite pairs,” ensuring that each independent variable plays an equal role in
the polynomial. For example, the four-term incomplete quadratic polynomial

P(x,y) = ay+ ajx + azy + azx* (6.27)

is not symmetric, as there is a quadratic term in x but the corresponding quadratic
term in y does not appear. On the other hand, the incomplete quadratic polynomial

P(x,y) =ag+ aix + ayy + azxy (6.28)

is symmetric, as the quadratic term gives equal “weight” to both variables.

A very convenient way of visualizing some of the commonly used incom-
plete but symmetric polynomials of a given order is also afforded by the Pascal
triangle. Again referring to Figure 6.5, the dashed lines show the terms that must
be included in an incomplete yet symmetric polynomial of a given order. (These
are, of course, not the only incomplete, symmetric polynomials that can be
constructed.) All terms above the dashed lines must be included in a polynomial
representation if the function is to exhibit geometric isotropy. This feature of
polynomials is utilized to a significant extent in following the development of
various element interpolation functions.

As in the two-dimensional case, to satisfy the geometric isotropy require-
ments, the polynomial expression of the field variable in three dimensions must
be complete or incomplete but symmetric. Completeness and symmetry can also
be depicted graphically by the “Pascal pyramid” shown in Figure 6.6. While the
three-dimensional case is a bit more difficult to visualize, the basic premise

Figure 6.6 Pascal “pyramid” for
polynomials in three dimensions.
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remains that each independent variable must be of equal “strength” in the poly-
nomial. For example, the 3-D quadratic polynomial

P(x,y.2) = ap+ aix + ay + a3z + asx’ + asy® + agz’
+ axy + agxz + agyz (6.29)

is complete and could be applied to an element having 10 nodes. Similarly, an
incomplete, symmetric form such as

P(x,y,2) =a0+ aix + axy + a3z + agx’ + asy2 + agz’ (6.30)
or
P(x,y,z) = ap+ a1x + azy + asz + asxy + asxz + agyz ~ (6.31)

could be used for elements having seven nodal degrees of freedom (an unlikely
case, however).

Geometric isotropy is not an absolute requirement for field variable
repesentation [1], hence, interpolation functions. As demonstrated by many
researchers, incomplete representations are quite often used and solution conver-
gence attained. However, in terms of A-refinement, use of geometrically isotropic
representations guarantees satisfaction of the compatibility and completeness
requirements. For the p-refinement method, the reader is reminded that the inter-
polation functions in any finite element analysis solution are approximations to
the power series expansion of the problem solution. As we increase the number
of element nodes, the order of the interpolation functions increases and, in the
limit, as the number of nodes approaches infinity, the polynomial expression of
the field variable approaches the power series expansion of the solution.

6.5 TRIANGULAR ELEMENTS

The interpolation functions for triangular elements are inherently formulated in
two dimensions and a family of such elements exists. Figure 6.7 depicts the first
three elements (linear, quadratic, and cubic) of the family. Note that, in the case
of the cubic element, an internal node exists. The internal node is required to

() (b) (©)

Figure 6.7 Triangular elements:
(@) 3-node linear, (b) 6-node quadratic,
(c) 10-node cubic.
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3 (x3,¥3)

y
2 (x,¥2)

X 1 (xy,yp)

Figure 6.8 A general three-
node triangular element
referred to global coordinates.

obtain geometric isotropy, as is subsequently discussed. The triangular elements
are not limited to two-dimensional problems. In fact, the triangular elements can
be used in axisymmetric 3-D cases (discussed later in this chapter) as well as in
structural analyses involving out-of-plane bending, as in plate and shell struc-
tures. In the latter cases, the nodal degrees of freedom include first derivatives of
the field variable as well as the field variable itself. While plate and shell prob-
lems are beyond the scope of this book, we allude to those problems again briefly
in Chapter 9.

Figure 6.8 depicts a general, three-node triangular element to which we
attach an element coordinate system that is, for now, assumed to be the same as
the global system. Here, it is assumed that only 1 degree of freedom is associated
with each node. We express the field variable in the polynomial form

b(x, y) = ap + aix + axy (6.32)

Applying the nodal conditions

b(x1, y1) = ¢y
b(x2, y2) = b (6.33)
d(x3, y3) = ds3
and following the general procedure previously outlined, we obtain
L xi oy | |a ol
1 x» »mljar=1h (6.34)
1 xo w» as b3

To solve for the polynomial coefficients, the matrix of coefficients in Equa-
tion 6.34 must be inverted. Inversion of the matrix is algebraically tedious but
straightforward, and we find

1
ap = ﬁ[dﬂ(h% — x3y2) + da(x3y1 — x1y3) + d3(x1y2 — x2y1)]

© The McGraw-Hill
Companies, 2004

177



Hutton: Fundamentals of
Finite Element Analysis

178

6. Interpolation Functions Text © The McGraw-Hill
for General Element Companies, 2004
Formulation

CHAPTER 6 Interpolation Functions for General Element Formulation

1
a, = ﬁ[dﬁ()’z = y3) + da(y3 — y1) + b3y — y2)]
(6.35)

1
a, = ﬁ[(bl(xS —x2) + ba(xy — x3) + d3(xp — x1)]

Substituting the values into Equation 6.32 and collecting coefficients of the nodal
variables, we obtain

[(x2y3 — x3y2) + (2 — y3)x + (x3 — x2)y]dy
d(x,y) = i + [(ayr — x1y3) + (y3 — yD)x + (x1 — x3)yldn (6.36)
+ [(x1y2 — x231) + (y1 — y2)x + (x2 — x1) ylds

Given the form of Equation 6.36, the interpolation functions are observed to be

1
Ni(x,y) = ﬁ[()Czys —x3y2) + (y2 — y3)x + (x3 — x2)y]
1
Na(x,y) = ﬂ[(xﬂ’l —x1y3) + (y3 — yDx + (x1 — x3)y] (6.37)

1
N3(x,y) = ﬁ[()Clyz —x2y1) + (V1 — y2)x + (x2 — x1)y]

where A is the area of the triangular element. Given the coordinates of the three
vertices of a triangle, it can be shown that the area is given by

1|1 X1 y1|
A=—1|1 x3 y (6.38)

2| |

1 x3 ¥l

Note that the algebraically complex form of the interpolation functions
arises primarily from the choice of the element coordinate system of Figure 6.8.
As the linear representation of the field variable exhibits geometric isotropy,
location and orientation of the element coordinate axes can be chosen arbitrarily
without affecting the interpolation results. If, for example, the element coordi-
nate system shown in Figure 6.9 is utilized, considerable algebraic simplification
results. In the coordinate system shown, we have x; = y; = y, = 0,24 = x,y3,

3 (%3, y3)
y Figure 6.9 Three-node
\ 2 — % triangle having an element
(x2, 0) coordinate system attached

1(0,0) to the element.
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and the interpolation functions become

1
Ni(x,y) = —[xays — y3x + (x3 — x2)y]

X2y3
1
No(x,y) = ——[y3x — x3y] (6.39)
X2Y3
y
N3(x,y) = —
y3

which are clearly of a simpler form than Equation 6.37. The simplification is
not without cost, however. If the element coordinate system is directly associ-
ated with element orientation, as in Figure 6.9, the element characteristic matri-
ces must be transformed to a common global coordinate system during model
assembly. (Recall the transformation of stiffness matrices demonstrated for bar
and beam elements earlier.) As finite element models usually employ a large
number of elements, the additional computations required for element trans-
formation can be quite time consuming. Consequently, computational efficiency
is improved if each element coordinate system is oriented such that the axes
are parallel to the global axes. The transformation step is then unnecessary
when model assembly takes place. In practice, most commercial finite element
software packages provide for use of either type element coordinate as a user
option [6].

Returning to Equation 6.32, observe that it is possible for the field variable
to take on a constant value, as per the completeness requirement, and that the first
partial derivatives with respect to the independent variables x and y are constants.
The latter shows that the gradients of the field variable are constant in both coor-
dinate directions. For a planar structural element, this results in constant strain
components. In fact, in structural applications, the three-node triangular element
is commonly known as a constant strain triangle (CST, for short). In the case of
heat transfer, the element produces constant temperature gradients, therefore,
constant heat flow within an element.

6.5.1 Area Coordinates

When expressed in Cartesian coordinates, the interpolation functions for the
triangular element are algebraically complex. Further, the integrations required
to obtain element characteristic matrices are cumbersome. Considerable sim-
plification of the interpolation functions as well as the subsequently required
integration is obtained via the use of area coordinates. Figure 6.10 shows a
three-node triangular element divided into three areas defined by the nodes and
an arbitrary interior point P(x, y). Note: P is not a node. The area coordinates of
P are defined as
Ay A As

1 A 2 A 3 A ( )
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Figure 6.10 Areas used to define area
coordinates for a triangular element.

L =0

(@) (b)

Figure 6.11
(a) Area A; associated with either P or P’ is constant.
(b) Lines of the constant area coordinate L.

where A is the total area of the triangle. Clearly, the area coordinates are not
independent, since

Li+L,+L;=1 (6.41)

The dependency is to be expected, since Equation 6.40 expresses the location of
a point in two-dimensions using three coordinates.

The important properties of area coordinates for application to triangular
finite elements are now examined with reference to Figure 6.11. In Figure 6.11a,
a dashed line parallel to the side defined by nodes 2 and 3 is indicated. For any
two points P and P’ on this line, the areas of the triangles formed by nodes 2 and
3 and either P or P’ are identical. This is because the base and height of any tri-
angle so formed are constants. Further, as the dashed line is moved closer to node
1, area A, increases linearly and has value A; = A, when evaluated at node 1.
Therefore, area coordinate L is constant on any line parallel to the side of the tri-
angle opposite node 1 and varies linearly from a value of unity at node 1 to value
of zero along the side defined by nodes 2 and 3, as depicted in Figure 6.11b. Sim-
ilar arguments can be made for the behavior of L, and L. These observations
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can be used to write the following conditions satisfied by the area coordinates
when evaluated at the nodes:
Node 1: Ly=1 L,=L;=0
Node2: L, =1 Li=L;=0 (6.42)
Node3: Ls;=1 Li=L,=0
The conditions expressed by Equation 6.42 are exactly the conditions that

must be satisfied by interpolation functions at the nodes of the triangular ele-
ment. So, we express the field variable as

d(x, y) = Lidy + Lodn + L3ds (6.43)

in terms of area coordinates. Is this different from the field variable representa-
tion of Equation 6.367 If the area coordinates are expressed explicitly in terms
of the nodal coordinates, the two field variable representations are shown to be
identical. The true advantages of area coordinates are seen more readily in
developing interpolation functions for higher-order elements and performing
integration of various forms of the interpolation functions.

6.5.2 Six-Node Triangular Element

A six-node element is shown in Figure 6.12a. The additional nodes 4, 5, and 6 are
located at the midpoints of the sides of the element. As we have six nodes, a com-
plete polynomial representation of the field variable is

d(x,y) = ap + a1x + ary + asx’ + asxy + asy’ (6.44)

L =1
2 AN
1 4 1

(@) (b)

Figure 6.12 Six-node triangular elements: (a) Node numbering convention.
(b) Lines of constant values of the area coordinates.
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which is ultimately to be expressed in terms of interpolation functions and nodal
values as

6
b, y) = Y Ni(x, y)di (6.45)

i=1

As usual, each interpolation function must be such that its value is unity when
evaluated at its associated node and zero when evaluated at any of the other five
nodes. Further, each interpolation is a quadratic function, since the field variable
representation is quadratic.

Figure 6.12b shows the six-node element with lines of constant values of the
area coordinates passing through the nodes. Using this figure and a bit of logic,
the interpolation functions are easily “constructed” in area coordinates. For
example, interpolation function N(x, y) = Ny(L, L,, L3) must have value of
zero at nodes 2, 3, 4, 5, and 6. Noting that L, = 1/2 at nodes 4 and 6, inclusion
of the term L; — 1/2 ensures a zero value at those two nodes. Similarly, L; = 0
at nodes 2, 3, 4, so the term L; satisfies the conditions at those three nodes.
Therefore, we propose

Ny = L1<L1 - %) (6.46)

However, evaluation of Equation 6.46 at node 1, where L; = 1, results in
Ny = 1/2. As Ny must be unity at node 1, Equation 6.46 is modified to

1
N, = 2L1<L1 — 5) =L2L;—1) (64721)

which satisfies the required conditions at each of the six nodes and is a quadratic
function, since L is a linear function of x and y.

Applying the required nodal conditions to the remaining five interpolation
functions in turn, we obtain

Na = L>(2L, — 1) (6.47b)
N3 = Ly(2L; — 1) (6.47¢)
Ny =4L,L, (6.47d)
Ns = 4L,L; (6.47¢)
Ne = 4L,L; (6.47f)

Using a similarly straightforward procedure, interpolation functions for addi-
tional higher-order triangular elements can be constructed. The 10-node cubic
element is left as an exercise.

6.5.3 Integration in Area Coordinates

As seen in Chapter 5 and encountered again in later chapters, integration of var-
ious forms of the interpolation functions over the domain of an element are



Hutton: Fundamentals of 6. Interpolation Functions Text
Finite Element Analysis for General Element
Formulation

6.5 Triangular Elements

required in formulating element characteristic matrices and load vectors. When
expressed in area coordinates, integrals of the form

// LYL5LS dA (6.48)
A

(where A is the total area of a triangle defined by nodes 1, 2, 3) must often be
evaluated. The relation

alblc!
/f LSL5LS dA = QA)——————— (6.49)
; (a+b+c+2)
A
has been shown [7] to be valid for all exponents a, b, ¢ that are positive integers
(recall 0! = 1). Therefore, integration in area coordinates is quite straight-

forward.

© The McGraw-Hill

As will be shown in Chapter 7, the convection terms of the stiffness matrix for a 2-D heat
transfer element are of the form

kij = / hN,N/ dA
A
where £ is the convection coefficient and A is element area. Use the interpolation func-
tions for a six-node triangular element given by Equation 6.47 to compute k4.

H Solution

Using Equation 6.47b and 6.47d, we have
Ny = L(2L, — 1)
N, =4L,L,

so (assuming £ is a constant)

ky = h/Lz(ZLz — 4L, L, dA = h/ (8L L3 —4L,L3)dA
A A

Applying Equation 6.49, we have

, (1H(31)(0!) 96hA  2hA
h | 8L,L3dA = 8h(2A) - ===
(1+3+0+2)! 720 15

A

N (IhHzhor) 16hA  2hA
h | 4L,L5dA = 4h(2A) = = —
(1+24+0+2)! 120 15

A
Therefore,
2hA 2hA

ky=—-——=
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6.6 RECTANGULAR ELEMENTS

Rectangular elements are convenient for use in modeling regular geometries, can
be used in conjunction with triangular elements, and form the basis for develop-
ment of general quadrilateral elements. The simplest of the rectangular family of
elements is the four-node rectangle shown in Figure 6.13, where it is assumed
that the sides of the rectangular are parallel to the global Cartesian axes. By con-
vention, we number the nodes sequentially in a counterclockwise direction, as
shown. As there are four nodes and 4 degrees of freedom, a four-term polynomial
expression for the field variable is appropriate. Since there is no complete four-
term polynomial in two dimensions, the incomplete, symmetric expression

b(x, y) = ap + a1x + ary + azxy (6.50)

is used to ensure geometric isotropy. Applying the four nodal conditions and
writing in matrix form gives

ol L xi oy xn ag
(bZ 1 X2 Y2 X2y a
= 6.51
b3 I x3 »3 x93 | | 6.51)
dy L xs ya xayad Laz
which formally gives the polynomial coefficients as
ao Loxp oy a7 (s
a I x y» x»m (03}
= 6.52
a I x3 y3 x3y3 b3 (6.52)
az I x4 ys x4y4 by

In terms of the nodal values, the field variable is then described by

Loxi oy a7
1 x2 y» xom %)
x,y)=[1 x xylfap =11 x .
dlx, y) =1 y xylal =1 y oy X3 Y3 X3y b3
1 x4 y4 Xays ¢4
(6.53)

from which the interpolation functions can be deduced.

4 (x4, )’4) 3 (Xz, y3)

1

Figure 6.13 A four-node
rectangular element defined in
global coordinates.

* 1 (xp,yp) 2 (xp, )
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The form of Equation 6.53 suggests that expression of the interpolation
functions in terms of the nodal coordinates is algebraically complex. Fortunately,
the complexity can be reduced by a more judicious choice of coordinates. For
the rectangular element, we introduce the normalized coordinates (also known as
natural coordinates or serendipity coordinates) r and s as
X —X -y

s=2"2 (6.54)
a b
where 2a and 2b are the width and height of the rectangle, respectively, and the
coordinates of the centroid are

r =

X1+ x2 - 1t
2 Y 2

(6.55)

X =
as shown in Figure 6.14a. Therefore, r and s are such that the values range from
—1 to +1, and the nodal coordinates are as in Figure 6.14b.

Applying the conditions that must be satisfied by each interpolation function
at each node, we obtain (essentially by inspection)

1
Ny(r,s) = Z(l —r)(1—y)

1
Ny(r,s) = Z(l +r)(1—y)

) (6.56a)
N3(r,s) = Z(l +r)(1+s)
1
Ny(r,s) = Z(l —r)(1+5s)
hence
b(x, y) = d(r, ) = Ni(r, s)d1 + No(r, s)dy + N3(r, s)bs + Nu(r, s)dy
(6.56b)

4 3 4(—-1L1 3(L D

b .

r r

y

2 1(—1,—-1) 2(1,-1)

l<—‘<lﬁ>
=
—_

=l

(a) (b)

Figure 6.14 A four-node rectangular element showing
(a) the translation to natural coordinates, (b) the natural
coordinates of each node.
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As in the case of triangular elements using area coordinates, the interpolation
functions are much simpler algebraically when expressed in terms of the natural
coordinates. Nevertheless, all required conditions are satisfied and the functional
form is identical to that used to express the field variable in Equation 6.50.
Also as with area coordinates, integrations involving the interpolation functions
expressed in the natural coordinates are simplified, since the integrands are rela-
tively simple polynomials (for rectangular elements) and the integration limits
(when integrating over the area of the element) are —1 and + 1. Further discussion
of such integration requirements, particularly numerical integration techniques,
is postponed until later in this chapter.

To develop a higher-order rectangular element, the logical progression is to
place an additional node at the midpoint of each side of the element, as in Fig-
ure 6.15. This poses an immediate problem, however. Inspection of the Pascal
triangle shows that we cannot construct a complete polynomial having eight
terms, but we have a choice of two incomplete, symmetric cubic polynomials:

d(x,y) = ao+ a1x + ary + asx’ + asxy + asy’ + agx’ + a7y’ (6.57a)
b(x,y) = ag+ a1x + ary + azx’ + aszxy + asy’ + aex’y + azxy>  (6.57b)

Rather than grapple with choosing one or the other, we use the natural coordi-
nates and the nodal conditions that must be satisfied by each interpolation func-
tion to obtain the functions serendipitously. For example, interpolation function
N; must evaluate to zero at all nodes except node 1, where its value must be
unity. At nodes 2, 3, and 6, r = 1, so including the term r — 1 satisfies the zero
condition at those nodes. Similarly, at nodes 4 and 7, s = 1 so the term s — 1 en-
sures the zero condition at those two nodes. Finally, at node 5, (r, s) = (0, —1),
and at node 8, (r, s) = (—1, 0). Hence, at nodes 5 and 8, the term r + s + 1 is
identically zero. Using this reasoning, the interpolation function associated with
node 1 is to be of the form

Ni(r,s) =1 —=r) (1 =s)(r+s+1) (6.58)
Evaluating at node 1 where (r,s) = (—1,—1), we obtain N; = —4, so a
correction is required to obtain the unity value. The final form is then
1
Ni(r,s) = Z(r -DA=-s)r+s+1) (6.59a)
4 7 3

yT g8e -

x 1

W@
(3]

Figure 6.15 Eight-node
rectangular element showing
both global and natural
coordinate axes.
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A parallel procedure for the interpolation functions associated with the other
three corner nodes leads to

No(r,s) = %(r + DA =5 —r+1) (6.59b)
N3(r, s) = %(1 +r+s)r+s—1) (6.59¢)
Ny(r,s) = %(r — D +s)(r—s+1) (6.59d)

The form of the interpolation functions associated with the midside nodes is
simpler to obtain than those for the corner nodes. For example, Ns has a value of
zero at nodes 2, 3, and 6 if it contains the term » — 1 and is also zero at nodes 1,
4, and 8 if the term 1 + r is included. Finally, if a zero value is at node 7,
(r, s) = (0, 1) is obtained by inclusion of s — 1. The form for N5 is

Ns = %(1 — (1 +r)(l—s)= %(1 -1 —s) (6.59%)

where the leading coefficient ensures a unity value at node 5. For the other mid-
side nodes,

Ng = %(1 +r)(1—s% (6.59f)
Ny = %(1 — (1 +s) (6.59g)
Ng = %(1 — )1 —s?) (6.59h)

are determined in the same manner.

Many other, successively higher-order, rectangular elements have been de-
veloped [1]. In general, these higher-order elements include internal nodes that,
in modeling, are troublesome, as they cannot be connected to nodes of other
elements. The internal nodes are eliminated mathematically. The elimination
process is such that the mechanical effects of the internal nodes are assigned
appropriately to the external nodes.

6.7 THREE-DIMENSIONAL ELEMENTS

As in the two-dimensional case, there are two main families of three-dimensional
elements. One is based on extension of triangular elements to tetrahedrons and
the other on extension of rectangular elements to rectangular parallelopipeds
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(often simply called brick elements). The algebraically cumbersome techniques
for deriving interpolation functions in global Cartesian coordinates has been
illustrated for two-dimensional elements. Those developments are not repeated
here for three-dimensional elements; the procedures are algebraically identical
but even more complex. Instead, we utilize only the more amenable approach of
using natural coordinates to develop the interpolation functions for the two basic
elements of the tetrahedral and brick families.

6.7.1 Four-Node Tetrahedral Element

A four-node tetrahedral element is depicted in Figure 6.16 in relation to a
global Cartesian coordinate system. The nodes are numbered 1-4 per the con-
vention that node 1 can be selected arbitrarily and nodes 2—4 are then specified
in a counterclockwise direction from node 1. (This convention is the same as
used by most commercial finite element analysis software and is very impor-
tant in assuring geometrically correct tetrahedrons. On the other hand, tetra-
hedral element definition for finite element models is so complex that it is
almost always accomplished by automeshing capabilities of specific software
packages.)

In a manner analogous to use of area coordinates, we now introduce the con-
cept of volume coordinates using Figure 6.17. Point P(x, y, z) is an arbitrary
point in the tetrahedron defined by the four nodes. As indicated by the dashed
lines, point P and the four nodes define four other tetrahedra having volumes

Vi = vol(P234) V, = vol(P134)
V3 = vol(P124) Va4 = vol(P123)

(6.60)

3
4 2
1 Figure 6.17 A four-node
tetrahedral element, showing
Figure 6.16 A four-node an arbitrary interest point

tetrahedral element. defining four volumes.
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The volume coordinates are defined as

Vi
L=~
%
V.
L= 72
(6.61)
L
Ty
V4
Ly=—
T
where V is the total volume of the element given by
L oxr vz
LT xa » 2
V=- 6.62
6|1 X3 Y3 I3 ( )
1 x4 y4 z4

As with area coordinates, the volume coordinates are not independent, since
Vi+ W+ V34+Vy=V (6.63)

Now let us examine the variation of the volume coordinates through the
element. If, for example, point P corresponds to node 1, we find V; =V,
Vo, =V3 =V, =0. Consequently L; =1, L, = L3 =Ly =0 at node 1. As P
moves away from node 1, V; decreases linearly, since the volume of a tetrahe-
dron is directly proportional to its height (the perpendicular distance from P to
the plane defined by nodes 2, 3, and 4) and the area of its base (the triangle
formed by nodes 2, 3, and 4). On any plane parallel to the base triangle of nodes
2,3, 4, the value of L, is constant. Of particular importance is that, if P lies in the
plane of nodes 2, 3, 4, the value of L; is zero. Identical observations apply to
volume coordinates L,, L3, and L4. So the volume coordinates satisfy all re-
quired nodal conditions for interpolation functions, and we can express the field
variable as

G(x,y,2) = Lid1 + Lodo + Labs + Lady (6.64)

Explicit representation of the interpolation functions (i.e., the volume co-
ordinates) in terms of global coordinates is, as stated, algebraically complex
but straightforward. Fortunately, such explicit representation is not generally
required, as element formulation can be accomplished using volume coordinates
only. As with area coordinates, integration of functions of volume coordinates
(required in developing element characteristic matrices and load vectors) is rela-
tively simple. Integrals of the form

/// LYLLSLG dV (6.65)
Vv
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where a, b, ¢, d are positive integers and V is total element volume, appear in
element formulation for various physical problems. As with area coordinates,
integration in volume coordinates is straightforward [7], and we have the inte-
gration formula

f/f LOLbLSLdav = a'bleld! (6V) (6.66)
Pmsma ™ " @+ b+c+d+3)! '
1%

which is the three-dimensional analogy to Equation 6.49.

As another analogy with the two-dimensional triangular elements, the tetra-
hedral element is most useful in modeling irregular geometries. However, the
tetrahedral element is not particularly amenable to use in conjunction with other
element types, strictly as a result of the nodal configurations. This incompati-
bility is discussed in the following sections. As a final comment on the four-
node tetrahedral element, we note that the field variable representation, as given
by Equation 6.64, is a linear function of the Cartesian coordinates. Therefore,
all the first partial derivatives of the field variable are constant. In structural
applications, the tetrahedral element is a constant strain element; in general, the
element exhibits constant gradients of the field variable in the coordinate
directions.

Other elements of the tetrahedral family are depicted in Figure 6.18. The
interpolation functions for the depicted elements are readily written in volume
coordinates, as for higher-order two-dimensional triangular elements. Note par-
ticularly that the second element of the family has 10 nodes and a cubic form for
the field variable and interpolation functions. A quadratic tetrahedral element
cannot be constructed to exhibit geometric isotropy even if internal nodes are
included.

(a) (b)

Figure 6.18 Higher-order tetrahedral elements:
(@) 10 node. (b) 20 node.
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(a)

(®)

Figure 6.19 Eight-node brick element: (a) Global Cartesian coordinates. (b) Natural
coordinates with an origin at the centroid.

6.7.2 Eight-Node Brick Element

The so-called eight node brick element (rectangular parellopiped) is shown in
Figure 6.19a in reference to a global Cartesian coordinate system. Here, we
utilize the natural coordinates r, s, t of Figure 6.19b, defined as

X —X

a

y—y

5 (6.67)

z—2

c

where 2a, 2b, 2¢ are the dimensions of the element in the x, y, z coordinates,
respectively, and the coordinates of the element centroid are

=1
Il

Il
Il

y3 — 2

X2 — X

2

5 (6.68)

5 — 21

2

The natural coordinates are defined such that the coordinate values vary between
—1 and 41 over the domain of the element. As with the plane rectangular
element, the natural coordinates provide for a straightforward development of
the interpolation functions by using the appropriate monomial terms to satisfy
nodal conditions. As we illustrated the procedure in several previous develop-
ments, we do not repeat the details here. Instead, we simply write the interpola-
tion functions in terms of the natural coordinates and request that the reader
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verify satisfaction of all nodal conditions. The interpolation functions are
1
Ny = g(l - =51+
1
N, = g(l +r)(1—s)(1+1)

N3 = é(l +r)(1+s)(1+1)

Ny = é(l —r)(1+s)(1+1)

. (6.69)
N5 = g(l —r)(1—=s)(1—1)
No = %(1 + (1 =51 —1)
Ny = é(l +r)(1 +s)(1 —1)
Ng = é(l —r)(1+s)(1—1)
and the field variable is described as
b(x, . 2) = i Ni(r, 5. ), (6.70)

i=1

If Equation 6.70 is expressed in terms of the global Cartesian coordinates, it
is found to be of the form

&(x,y,2) =ap+ ayx + ary + a3z + asxy + asxz + agyz + azxyz  (6.71)

showing that the field variable is expressed as an incomplete, symmetric polyno-
mial. Geometric isotropy is therefore assured. The compatibility requirement is
satisfied, as is the completeness condition. Recall that completeness requires that
the first partial derivatives must be capable of assuming constant values (for C°
problems). If, for example, we take the first partial derivative of Equation 6.71
with respect to x, we obtain

a
% =ay +asgy +asz +azyz (672)

which certainly does not appear to be constant at first glance. However, if we
apply the derivative operation to Equation 6.70 while noting that

o _ 100

ax a or

(6.73)
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the result is

B 1 1
B¢ = —(1=5)14+0)(dy— 1) + — (1 4+ 5)(1 + 1)(d3 — Ps)
0x 8a 8a

1 1
+ 8—(1 —$)(1 = )(dbs — bs) + —— (1 +s)(1 =) (b7 — dg)  (6.74)
a 8a

Referring to Figure 6.19, observe that, if the gradient of the field variable in the
x direction is constant, dd/dx = C, the nodal values are related by

b
b2 = + —dx = ¢ + C(2a)
dx

od
b3 = by + adx = ¢y + C(2a)

9 (6.75)
be = bs + adx = ¢s+ C(2a)
dd
b7 = ds + adx = bs + C(2a)
Substituting these relations into Equation 6.74, we find
ad 1
— = —[(1 =s)(1 +1)(2aC) + (1 + s)(1 +1)(2aC)
ax 8a
+ (1 =5)(1+0)2aC) + (1 +s)(1 —1)(2aC)] (6.76a)
which, on expansion and simplification, results in
0
% =C (6.76b)
ox

Observing that this result is valid at any point (r, s, ) within the element, it
follows that the specified interpolation functions indeed allow for a constant gra-
dient in the x direction. Following similar procedures shows that the other partial
derivatives also satisfy the completeness condition.

6.8 ISOPARAMETRIC FORMULATION

The finite element method is a powerful technique for analyzing engineering
problems involving complex, irregular geometries. However, the two- and three-
dimensional elements discussed so far in this chapter (triangle, rectangle, tetra-
hedron, brick) cannot always be efficiently used for irregular geometries.
Consider the plane area shown in Figure 6.20a, which is to be discretized via a
mesh of finite elements. A possible mesh using triangular elements is shown in
Figure 6.20b. Note that the outermost “row” of elements provides a chordal ap-
proximation to the circular boundary, and as the size of the elements is decreased
(and the number of elements increased), the approximation becomes increasingly
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(a)

(©) (d

Figure 6.20

(@) A domain to be modeled. (b) Triangular elements.

(c) Rectangular elements. (d) Rectangular and quadrilateral
elements.

closer to the actual geometry. However, also note that the elements in the inner
“rows” become increasingly slender (i.e., the height to base ratio is large). In gen-
eral, the ratio of the largest characteristic dimension of an element to the smallest
characteristic dimension is known as the aspect ratio. Large aspect ratios increase
the inaccuracy of the finite element representation and have a detrimental effect
on convergence of finite element solutions [8]. An aspect ratio of 1 is ideal but
cannot always be maintained. (Commercial finite element software packages pro-
vide warnings when an element’s aspect ratio exceeds some predetermined limit.)
In Figure 6.20b, to maintain a reasonable aspect ratio for the inner elements, it
would be necessary to reduce the height of each row of elements as the center of
the sector is approached. This observation is also in keeping with the convergence
requirements of the /-refinement method. Although the triangular element can be
used to closely approximate a curved boundary, other considerations dictate a
relatively large number of elements and associated computation time.

If we consider rectangular elements as in Figure 6.20c (an intentionally
crude mesh for illustrative purposes), the problems are apparent. Unless the
elements are very small, the area of the domain excluded from the model (the
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shaded area in the figure) may be significant. For the case depicted, a large num-
ber of very small square elements best approximates the geometry.

At this point, the astute reader may think, Why not use triangular and rec-
tangular elements in the same mesh to improve the model? Indeed, a combina-
tion of the element types can be used to improve the geometric accuracy of the
model. The shaded areas of Figure 6.20c could be modeled by three-node tri-
angular elements. Such combination of element types may not be the best in
terms of solution accuracy since the rectangular element and the triangular ele-
ment have, by necessity, different order polynomial representations of the field
variable. The field variable is continuous across such element boundaries; this is
guaranteed by the finite element formulation. However, conditions on derivatives
of the field variable for the two element types are quite different. On a curved
boundary such as that shown, the triangular element used to fill the “gaps” left by
the rectangular elements may also have adverse aspect ratio characteristics.

Now examine Figure 6.20d, which shows the same area meshed with rectan-
gular elements and a new element applied near the periphery of the domain. The
new element has four nodes, straight sides, but is not rectangular. (Please note
that the mesh shown is intentionally coarse for purposes of illustration.) The new
element is known as a general two-dimensional quadrilateral element and is seen
to mesh ideally with the rectangular element as well as approximate the curved
boundary, just like the triangular element. The four-node quadrilateral element is
derived from the four-node rectangular element (known as the parent element)
element via a mapping process. Figure 6.21 shows the parent element and its
natural (r, s) coordinates and the quadrilateral element in a global Cartesian
coordinate system. The geometry of the quadrilateral element is described by

4
X = Z Gi(x, y)x; (6.77)

i=1
4

y = Z Gi(x,y)yi (6.78)
i=1

where the G;(x, y) can be considered as geometric interpolation functions, and
each such function is associated with a particular node of the quadrilateral

4(-1,1) 3(1,1) 4 (x4, 4) 3 (%3, y3)

|

r

)’T—>
L(=1,-1) 2, -D - 1 Gy, 1)

Figure 6.21 Mapping of a parent element into an isoparametric
element. A rectangle is shown for example.

2 (x2,¥2)
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element. Given the geometry and the form of Equations 6.77 and 6.78, each
function G, (x, y) must evaluate to unity at its associated node and to zero at each
of the other three nodes.

These conditions are exactly the same as those imposed on the interpolation
functions of the parent element. Consequently, the interpolation functions for the
parent element can be used for the geometric functions, if we map the coordi-
nates so that

(r,s) = (=1, =1) = (x1, y1)
(r,s) = (L, =1) = (x2, y2)
(r,s) = (1, 1) = (x3, y3)
(r,s) = (=1, 1) = (x4, ys)

(6.79)

where the symbol = is read as “maps to” or “corresponds to.” Note that the (r, s)
coordinates used here are not the same as those defined by Equation 6.54. In-
stead, these are the actual rectangular coordinates of the 2 unit by 2 unit parent
element.

Consequently, the geometric expressions become

4
x =) Ni(r.s)x

7 (6.80)
y= Z Ni(r, s)y:

i=1

Clearly, we can also express the field variable variation in the quadrilateral ele-
ment as

4
b(x,y) = dr,s) = Y Nir, $)dy (6.81)
i=1
if the mapping of Equation 6.79 is used, since all required nodal conditions are
satisfied. Since the same interpolation functions are used for both the field vari-
able and description of element geometry, the procedure is known as isopara-
metric (constant parameter) mapping. The element defined by such a procedure
is known as an isoparametric element. The mapping of element boundaries is
illustrated in the following example.

Figure 6.22 shows a quadrilateral element in global coordinates. Show that the mapping
described by Equation 6.80 correctly describes the line connecting nodes 2 and 3 and
determine the (x, y) coordinates corresponding to (r, s) = (1, 0.5)

H Solution
First, we determine the equation of the line passing through nodes 2 and 3 strictly by
geometry, using the equation of a two-dimensional straight line y = mx + b. Using the
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3(25,2)
4(1.25, 1.75)

1

Figure 6.22 Quadrilateral element for
Example 6.3.

* 1(1, D 23,1

known coordinates of nodes 2 and 3, we have

Node 2: 1=3m+0>b

Node 3: 2=25m+b
Solving simultaneously, the slope is

m= -2
and the y intercept is
b=17
Therefore, element edge 2-3 is described by
y=—-2x+7

Using the interpolation functions given in Equation 6.56 and substituting nodal x and y
coordinates, the geometric mapping of Equation 6.80 becomes

1 1 1
x = Z(l - =)+ Z(l +r)(1—=503) + Z(l +r)(1 +5)(2.5)

1
+ (=N +9)(1.25)

<
Il

1 1 1

7= =9)M)+ 20+ =) + 21+ 1) +5)(2)
1

+ (1= +9)(1.75)

Noting that edge 2-3 corresponds to = 1, the last two equations become

x=§(1—s)+£(l+s)=£—ojs
2 2 2 2
1 3 1

y=5(1—s)+(l+s)=5+5s

Eliminating s gives

2x+y=—
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which is the same as
y=-2x+17
as desired.
For (r, s) = (1, 0.5), we obtain

55 05
x=———(0.5) =2.625
2 2

—3+1(05)—175
y—2 5(05) = L.

In formulating element characteristic matrices, various derivatives of the in-
terpolation functions with respect to the global coordinates are required, as pre-
viously demonstrated. In isoparametric elements, both element geometry and
variation of the interpolation functions are expressed in terms of the natural
coordinates of the parent element, so some additional mathematical complica-
tion arises. Specifically, we must compute d N;/dx and dN;/dy (and, possibly,
higher-order derivatives). Since the interpolation functions are expressed in
(r, s) coordinates, we can formally write these derivatives as

oN; ON,; or ON; 0s
ax - ar £+ ds ox
oN; ON; or 0N, ds
oy _ or oy | o dy

(6.82)

However, unless we invert the relations in Equation 6.80, the partial derivatives
of the natural coordinates with respect to the global coordinates are not known.
As it is virtually impossible to invert Equation 6.80 to explicit algebraic expres-
sions, a different approach must be taken.

We take an indirect approach, by first examining the partial derivatives of the
field variable with respect to the natural coordinates. From Equation 6.81, the
partial derivatives of the field variable with respect to the natural coordinates can
be expressed formally as

b ddax n ad dy
ar  9x dar  dy or
b ddax n odb dy
ds  dx ds  dy ds
In light of Equation 6.81, computation of the partial derivatives of the field vari-
able requires the partial derivatives of each interpolation function as
8Ni . 8N, 0x 8N, 8)1
ar  9x or dy dr
dN; ON;ox  ON;dy
ds  Ox s dy 0s

(6.83)

i=1,4 (6.84)
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Writing Equation 6.84 in matrix form,

ON; dx dy dN;

or ar  or dx :

IN; ax ay | | o =0 (6.85)
as as  0ds dy

we observe that the 2 x 1 vector on the left-hand side is known, since the inter-
polation functions are expressed explicitly in the natural coordinates. Similarly,
the terms in the 2 x 2 coefficient matrix on the right-hand side are known via
Equation 6.80. The latter, known as the Jacobian matrix, denoted [J], is given
by

4 . 4 .
0x 8y Z aNl X Z aNl Vi
o 0 i=1 ar i=1 or
or or
Hl= 3 3 = (6.86)
dx  dy SO
as s i=1 0s ' i=1 as Vi

If the inverse of the Jacobian matrix can be determined, Equation 6.85 can be
solved for the partial derivatives of the interpolation functions with respect to the
global coordinates to obtain

dN; oN; dN;

ax | _ =1 ) or | _|In In or S

oN; [ 1] oN; [ |:121 122] dN; i=14 (6.87)
dy as as

with the terms of the inverse of the Jacobian matrix denoted I;; for convenience.
Equation 6.87 can be used to obtain the partial derivatives of the field variable
with respect to the global coordinates, as required in discretizing a governing dif-
ferential equation by the finite element method. In addition, the derivatives are
required in computing the “secondary” variables, including strain (then stress) in
structural problems and heat flux in heat transfer. These and other problems are
illustrated in subsequent chapters.

As we also know, various integrations are required to obtain element stiff-
ness matrices and load vectors. For example, in computing the terms of the con-
ductance matrix for two-dimensional heat transfer elements, integrals of the

form
— ) dA
ox OJx
A

are encountered, and the integration is to be performed over the area of the
element in global coordinates. However, for an isoparametric element such as
the quadrilateral being discussed, the interpolation functions are in terms of the
parent element coordinates. Hence, it is necessary to transform such integrals to
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the natural coordinates. From Equation 6.87, we have

_ (1, aN; aN; 1 N, i1, N,
—\Mar s J\UM o T o
so the integrand is transformed using the terms of [J]~'. As shown in advanced

calculus [9], the differential area relationship is

dA =dxdy = |J|drds

ON; ON;
0x Ox

(6.88)

(6.89)

so integrals of the form described previously become

1 1
/f ONi NS\, _ /f 1 W (1 N N
ax ox ! as )\ T res
f B (6.90)

Such integrals are discussed in greater detail in later chapters in problem-specific
contexts. The intent of this discussion is to emphasize the importance of the
Jacobian matrix in development of isoparametric elements.

Rather than work with individual interpolation functions, it is convenient to
combine Equations 6.84 and 6.85 into matrix form as

d[N] dx dy d[N]
ar ar or dx
= 6.91
o [T | ax oy |] o 0
s ds  ds dy
where [N] is the 1 x 4 row matrix
[N]=[N1 N> N3 N4l (6.92)
and Equation 6.91 in matrix notation is the same as
0 ax  0Ox Kl
or ar  os 0x
N]= N 6.93
5 (V] ay oy | @ (V] (6.93)
s ar  ds dy

We use this matrix notation to advantage in later chapters, when we examine
specific applications.

While the isoparametric formulation just described is mathematically
straightforward, the algebraic complexity is significant, as illustrated in the
following example.

Determine the Jacobian matrix for a four-node, two-dimensional quadrilateral element
having the parent element whose interpolation functions are given by Equation 6.56.
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H Solution
The partial derivatives of x and y with respect to r and s per Equations 6.56 and 6.80 are

o iaN" L = )+ (1= )+ (1 )33 — (1 + 5)xs]
— = —x; = = [—(1 —s)x — 5)x )Xz — )X
o = or 4 : ’ ’ )
3y = ON; 1

=) Ly, =[—(1- 1— 1 —

oy ; o V= gm0 =+ =)y + 1+ 9y = 1+ 9wl
9 N, 1
£=§¥xi=Z[—(l—r)xl—(1+r>xz+(1+r)x3+<1—rm]
3y < 0N, 1

=2 5 v = =y = Ay (L s+ (=l

i=1 h

The Jacobian matrix is then

[J]:_|:(1—S)(Xz—x1)+(1+s)(x3—x4) (1—S)(YZ—Y1)+(1+S)(y3—y4)]
AL =)= x) + A+ 10 =x) (=) =)+ 1+ = y)

Note that finding the inverse of this Jacobian matrix in explicit form is not an envi-
able task. The task is impossible except in certain special cases. For this reason, isopara-
metric element formulation is carried out using numerical integration, as discussed in
Section 6.10.

201

The isoparametric formulation is by no means limited to linear parent ele-
ments. Many higher-order isoparametric elements have been formulated and
used successfully [1]. Figure 6.23 depicts the isoparametric elements corre-
sponding to the six-node triangle and the eight-node rectangle. Owing to the
mapping being described by quadratic functions of the parent elements, the
resulting elements have curved boundaries, which are also described by qua-
dratic functions of the global coordinates. Such elements can be used to closely
approximate irregular boundaries. However, note that curved elements do not,
in general, exactly match a specified boundary curve.

(a) (b)

Figure 6.23 |soparametric mapping of quadratic elements into curved elements:
(@) Six-node triangle. (b) Eight-node rectangle.
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6.9 AXISYMMETRIC ELEMENTS

Many three-dimensional field problems in engineering exhibit symmetry about
an axis of rotation. Such problems, known as axisymmetric problems, can be
solved using two-dimensional finite elements, which are most conveniently de-
scribed in cylindrical (r, 6, z) coordinates. The required conditions for a problem
to be axisymmetric are as follows:

1. The problem domain must possess an axis of symmetry, which is
conventionally taken as the z axis; that is, the domain is geometrically
a solid of revolution.

2. The boundary conditions are symmetric about the axis of revolution;
thus, all boundary conditions are independent of the circumferential
coordinate 6.

3. All loading conditions are symmetric about the axis of revolution; thus,
they are also independent of the circumferential coordinate.

In addition, the material properties must be symmetric about the axis of revolu-
tion. This condition is, of course, automatically satisfied for isotropic materials.

If these conditions are met, the field variable ¢ is a function of radial and
axial (7, z) coordinates only and described mathematically by two-dimensional
governing equations.

Figure 6.24a depicts a cross section of an axisymmetric body assumed to be
the domain of an axisymmetric problem. The cross section could represent the
wall of a pressure vessel for stress or heat transfer analysis, an annular region
of fluid flow, or blast furnace for steel production, to name a few examples. In

|
|
|
z ("3723)
/,/::—"" ——=I3~ \ (rp, 29)
(
SO Na /// // r r

~Ito———— --Z- (r1. 29)

(a) (b)

Figure 6.24
(@) An axisymmetric body and cylindrical coordinates. (b) A three-
node triangle in cylindrical coordinates at an arbitrary value 6.
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Figure 6.24b, a three-node triangular element is shown having nodal coordinates
(ri, z;). In the axisymmetric case, the field variable is discretized as

3
b(r,2) = Y Ni(r, D)y (6.94)

i=1
where the interpolation functions N;(r, z) must satisfy the usual nodal conditions.

Noting that the nodal conditions are satisfied by the interpolation functions
defined by Equation 6.37 if we simply substitute r for x and z for y, the inter-
polation functions for the axisymmetric triangular element are immediately
obtained. Similarly, the interpolation functions in terms of area coordinates are
also applicable.

Since, by definition of an axisymmetric problem, the problem, therefore its
solution, is independent of the circumferential coordinate 6, so must be the inter-
polation functions. Consequently, any two-dimensional element and associated
interpolation functions can be used for axisymmetric elements. What is the dif-
ference? The axisymmetric element is physically three dimensional. As depicted
in Figure 6.25, the triangular axisymmetric element is actually a prism of revo-
lution. The “nodes” are circles about the axis of revolution of the body, and the
nodal conditions are satisfied at every point along the circumference defined by
the node of a two-dimensional element. Although we use a triangular element
for illustration, we reiterate that any two-dimensional element can be used to
formulate an axisymmetric element.

As is shown in subsequent chapters in terms of specific axisymmetric
problems, integration of various functions of the interpolation functions over the
volume are required for element formulation. Symbolically, such integrals are
represented as

F(r,ﬂ,z)Z/// f(r,ﬂ,z)dV:/// f(r,0,2)rdrdodz (6.95)
1%

Figure 6.25 A three-dimensional
representation of an axisymmetric
element based on a three-node
triangular element.
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/N Figure 6.26 Differential volume
X in cylindrical coordinates.

where V is the volume of an element and dV = r dr d6 dz is the differential vol-
ume depicted in Figure 6.26. For axial symmetry, the integrand is independent of
the circumferential coordinate 6, so the integration indicated in Equation 6.95
becomes

F(r,0,z) = F(r,z) =2m // f(r,2)rdrdz (6.96)
A

Equation 6.96 shows that the integration operations required for formulation of
axisymmetric elements are distinctly different from those of two-dimensional
elements, even though the interpolation functions are essentially identical. As
stated, we show applications of axisymmetric elements in subsequent chapters.
Also, any two-dimensional element can be readily converted to an axisymmetric
element, provided the true three-dimensional nature of the element is taken into
account when element characteristic matrices are formulated.

In following chapters, we show that integrals of the form

/N,-deV
\4

where N;, N; are interpolation functions and V is element volume, must be evaluated in
formulation of element matrices. Evaluate the integral withi = 1, j = 2 for an axisym-
metric element based on the three-node triangle using the area coordinates as the interpo-
lation functions.

H Solution
For the axisymmetric element, we use Equation 6.96 to write

/N,-Nj dv =Zﬂ/N,-erdrdz:21T/L,—Ljrdrdz
v A A

where A is the element area. Owing to the presence of the variable r in the integrand, the
integration formula, Equation 6.49, cannot be applied directly. However, we can express
r in terms of the nodal coordinates r;, r», r3 and the area coordinates as

r = Llrl + Lz}"z + L3r3
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Then, noting that dr dz = dA, we have

ZTr/L,-Ljrdrdz=27T/L,—Lj(L1r1 + Lory 4+ Liry)dA
A A

which is of the appropriate form for application of the integration formula. For i = 1,
J = 2, the integral becomes

2w/L1L2rdrdz:2w/L1L2(L1r1 + Lory + Liry) dA
A A

=2m]/L%L2dA+2w2/L.L§ dA+27rr3/L1L2L3dA
A A A

Applying the integration formula to each of the three integrals on the right,

ZW/LlefdrdZ

A

= 4’1TA|:V

@10 (12101 ANy }
211042 Pa+240+2!  PUri+142)!

_4 A<2r1+2r2+ r3>_7rA(2 +2 + )
020 T 120 Ta20) T 30 TR
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The integration technique used in Example 6.5 is also applicable to higher-
order, straight-sided triangular elements, as shown in the next example.

For an axisymmetric element based on the six-node, quadratic triangular element having
interpolation functions given by Equation 6.47, evaluate the integral

I=/N2N4dV
Vv

H Solution
Using Equation 6.93,

1 = /N2N4 dV =2= / NyNyrdrdz = 2’1T/ Ly(2L, — 1)(4L L,)rdrdz
Vv A A
Now observe that, even though the interpolation functions vary quadratically over the
element area, the area coordinates, by definition, vary linearly. Since the element sides
are straight, the radial coordinate can still be expressed as
r=Liry+ Lyry + Ljrs

Therefore, we have

I = ZTF/ L2(2L2 - 1)(4L|L2)(L1}"1 + L2”2 + L';}"';) dA

A

EXAMPLE 6.6
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or
I = 16Tr/ (L2L3ri + LiLyry + LiL3Lsrs) dA
A
- Sw/ (L3L2r) + L\ L3r, 4+ LiL2L3r3) dA
A

Application of the integration formula, Equation 6.49, to each of the six integrals repre-
sented here (left as an exercise), we find

mA
I = R(6r2 —4r1 - 2r3)

6.10 NUMERICAL INTEGRATION:
GAUSSIAN QUADRATURE

Previous chapters show that integration of various functions of the field variable
are required for formulation of finite element characteristic matrices. Chapter 5
reveals that the Galerkin method requires integration over the element domain
(and, as seen, physical volume), once for each interpolation function (trial solu-
tion). In fact, an integration is required to obtain the value of every component of
the stiffness matrix of a finite element. In addition, integrations are required to
obtain nodal equivalents of nonnodal loadings.

In this chapter, we focus primarily on polynomial representations of the dis-
cretized representations of the field variable. In subsequent formulation of ele-
ment characteristic matrices, we are faced with integrations of polynomial forms.
A simple polynomial is relatively easy to integrate in closed form. In many cases,
however, the integrands are rational functions, that is, ratios of polynomials; and
these are quite tedious to integrate directly. In either case, in the finite element
context, where large numbers of elements, hence huge numbers of integrations,
are required, analytical methods are not efficient. Finite element software pack-
ages do not incorporate explicit integration of the element formulation equations.
Instead, they use numerical techniques, the most popular of which is Gaussian
(or Gauss-Legendre) quadrature [10].

The concept of Gaussian quadrature is first illustrated in one dimension in
the context of an integral of the form

X2

I :[h(x) dx (6.97)

X1

Via the change of variable r = ax + b, Equation 6.97 can be converted to

I
I =1 f(r)dr (6.98)
/
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with dr = a dx.The coefficients a and b are determined so that the integration
limits become minus and plus unity. This is conventional for the numerical inte-
gration procedure and also accords nicely with the range of the natural coordi-
nates of many of the elements discussed in this chapter.

Per the Gaussian integration procedure, the integration represented by Equa-
tion 6.98 can be approximated by

1= Wifr) (6.99)
i=1

where W, are Gaussian weighting factors and r; are known as sampling points
or Gauss points. The weighting factors and sampling points are determined [9]
to minimize error, particularly in terms of polynomial functions. Of particular
import in finite element analysis, a polynomial of order n can be exactly inte-
grated. Referring to Equation 6.99, use of m sampling points and weighting
factors results in an exact value of the integral for a polynomial of order 2m — 1,
if the sampling points and weighting factors are chosen in accordance with
Table 6.1. This means, for example, that a cubic polynomial can be exactly inte-
grated by Equation 6.99, using only two sampling points and evaluating the
integrand at those points, multiplying by the weighting factors, and summing
the results.

To illustrate how the sampling points and weighting factors are determined,
we formally integrate a general polynomial in one dimension as

1

/(ao +airr +awr?+ a4+ - +a,r")dr

R day+ Zar+ Zaut o —
T cdo Ty s nt 1

a (6.100)

Table 6.1 Sampling points and weighting factors for Gaussian quadrature numerical

1 m
integration of [ f(r)dr ~ Y. W, f(r;). This is an abridged table, giving values
-1 i=1
sufficient for exact integration of a polynomial of order seven or less

m T W;
0.0 2.0
2 0.577350269189626. . . 1.0
—0.577350269189626. . . 1.0
3 0.0 0.888888888888889
0.774596669241483 0.555555555555556
—0.774596669241483 0.555555555555556
4 0.339981043583856 0.652145154862526
—0.339981043583856 0.652145154862526
0.861136311590453 0.347854845137454

—0.861136311590453 0.347854845137454
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and we observe that, owing to the symmetry of the integration limits, all odd
powers integrate to zero. Also note that we assume here that n is an even integer.
The approximation to the integral per Equation 6.99 is

I~ Z W f(r;) = Wl(ao +ayr; + a2r12 + a3rl3 4.4 a,,rf)
= + Wa(ao + arry + aary + asry + - + a,ry)

+ W3(ao +ayr; + a2r32 + a3r§’ 4+ anrg')
(6.101)

2
m

+ W, (ao +air, + axr, + a3rn31 + -+ anr,:i)

Comparing Equations 6.100 and 6.101 in terms of the coefficients a; of the poly-
nomial, the approximation of Equation 6.101 becomes exact if

NgE
=
I
o

> owird=0 (6.102)

iWﬂ'iﬂ: 2

7 n+1

where m is the number of sampling (Gauss) integration points.

Equation 6.102 represents n equations in 2m + 1 unknowns. The unknowns
are the weighting factors W;, the sampling point values r;, and most trouble-
some, the number of sampling points m. While we do not go into the complete
theory of Gaussian quadrature, we illustrate by example how the sampling points
and weights can be determined using both the equations and logic. First, note that
the equations corresponding to odd powers of the polynomial indicate a zero
summation. Second, note that the first equation is applicable regardless of the
order of the polynomial; that is, the weighting factors must sum to the value of
2 if exactness is to be achieved.
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6.10 Numerical Integration: Gaussian Quadrature

If, for example, we have a linear polynomial n = 1, the first two of Equa-
tion 6.102 are applicable and lead to the conclusions that we need only one sam-
pling point and that the appropriate values of the weighting factor and sample
point to satisfy the two equations (in this case) are W; = 2 and r; = 0. Next, con-
sider the case of a cubic polynomial, n = 3. In this case, we have

ijw,:z
i=1
Xm:Wﬂ’i =0

=1

ZW,-rf:%

1

m
i=

representing three equations in 2m + 1 unknowns. If we let m = 1, the first two
equations lead to Wy = 2, r; = 0, but the third equation cannot be satisfied. On
the other hand, if m = 2, we have

Wi+ W, =2
W]Vl +W2}’2:0
2

W1r12+W2r22= g

a system of three equations in four unknowns. We cannot directly solve these
equations, but if we examine the case Wi = W, = 1 and r; = —r,, the first two
equations are satisfied and the third equation becomes

2 1 3
r12+r§=2r12=§=>r1=\£=§=0.57735...

corresponding exactly to the second entry in Table 6.1. These weighting factors
and Gauss points also integrate a quadratic polynomial exactly. The reader is
urged to note that, because of the zero result from integrating the odd powers in
the polynomial, exact results are obtained for two polynomial orders for each set
of sampling points and weighting factors.

This discussion is by no means intended to be mathematically rigorous in
terms of the theory underlying numerical integration. The intent is to give some
insight as to the rationale behind the numerical values presented in Table 6.1.
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Evaluate the integral
1

f(r):/(r2—3r+7)dr
-1

using Gaussian quadrature so that the result is exact.
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H Solution

As the integrand is a polynomial of order 2, we have, for exact integration, 2m — 1 = 2,
which results in the required number of sampling points as m = 3/2. The calculated
number of sampling points must be rounded up to the nearest integer value, so in this
case, we must use two sampling points. Per Table 6.1, the sampling points are r; =
40.5773503 and the weighting factors are W; = 1.0, i = 1, 2. Therefore,

1
f(r2 —3r+7)dr = (1)[(0.5773503)% — 3(0.5773503) + 7]

—1

+ (1)[(—=0.5773503)* — 3(—0.5773503) + 7]

1
/(r2 —3r 4+ 7)dr = 14.666667

-1

The result is readily verified as, indeed, being exact by direct integration.

The Gaussian quadrature numerical integration procedure is by no means
limited to one dimension. In finite element analysis, integrals of the forms
1

1
/ /f(r,s)drds

-1 -1

11 1
I:///f(r,s,t)drdsdt
1 -1 -1

1

(6.103)

are frequently encountered. Considering the first of Equation 6.103, we integrate
first with respect to r (using the Gaussian technique) to obtain

1 1 1 1

I=//f(r,s)drds:/Z[W,-f(r,»,s)]ds:/g(s)ds (6.104)

1 -1 o=t ~1

which, in turn, is integrated via quadrature to obtain
1= Wgls)) (6.105)
j=1

combining Equations 6.98 and 6.99, we find

I 1

I = / / flros)ydrds =YY W;W, f(ri,s)) (6.106)

S5 j=1 i=1



