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F undamentals of Finite Element Analysis is intended to be the text for a
senior-level finite element course in engineering programs. The most
appropriate major programs are civil engineering, engineering mechan-

ics, and mechanical engineering. The finite element method is such a widely used
analysis-and-design technique that it is essential that undergraduate engineering
students have a basic knowledge of the theory and applications of the technique.
Toward that objective, I developed and taught an undergraduate “special topics”
course on the finite element method at Washington State University in the sum-
mer of 1992. The course was composed of approximately two-thirds theory and
one-third use of commercial software in solving finite element problems. Since
that time, the course has become a regularly offered technical elective in the
mechanical engineering program and is generally in high demand. During
the developmental process for the course, I was never satisfied with any text that
was used, and we tried many. I found the available texts to be at one extreme or
the other; namely, essentially no theory and all software application, or all theory
and no software application. The former approach, in my opinion, represents
training in using computer programs, while the latter represents graduate-level
study. I have written this text to seek a middle ground. 

Pedagogically, I believe that training undergraduate engineering students to
use a particular software package without providing knowledge of the underlying
theory is a disservice to the student and can be dangerous for their future employ-
ers. While I am acutely aware that most engineering programs have a specific
finite element software package available for student use, I do not believe that the
text the students use should be tied only to that software. Therefore, I have writ-
ten this text to be software-independent. I emphasize the basic theory of the finite
element method, in a context that can be understood by undergraduate engineer-
ing students, and leave the software-specific portions to the instructor.

As the text is intended for an undergraduate course, the prerequisites required
are statics, dynamics, mechanics of materials, and calculus through ordinary dif-
ferential equations. Of necessity, partial differential equations are introduced
but in a manner that should be understood based on the stated prerequisites.
Applications of the finite element method to heat transfer and fluid mechanics are
included, but the necessary derivations are such that previous coursework in
those topics is not required. Many students will have taken heat transfer and fluid
mechanics courses, and the instructor can expand the topics based on the stu-
dents’ background.

Chapter 1 is a general introduction to the finite element method and in-
cludes a description of the basic concept of dividing a domain into finite-size
subdomains. The finite difference method is introduced for comparison to the
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finite element method. A general procedure in the sequence of model definition,
solution, and interpretation of results is discussed and related to the generally
accepted terms of preprocessing, solution, and postprocessing. A brief history of
the finite element method is included, as are a few examples illustrating applica-
tion of the method. 

Chapter 2 introduces the concept of a finite element stiffness matrix and
associated displacement equation, in terms of interpolation functions, using the
linear spring as a finite element. The linear spring is known to most undergradu-
ate students so the mechanics should not be new. However, representation of
the spring as a finite element is new but provides a simple, concise example of
the finite element method. The premise of spring element formulation is ex-
tended to the bar element, and energy methods are introduced. The first theorem
of Castigliano is applied, as is the principle of minimum potential energy.
Castigliano’s theorem is a simple method to introduce the undergraduate student
to minimum principles without use of variational calculus.

Chapter 3 uses the bar element of Chapter 2 to illustrate assembly of global
equilibrium equations for a structure composed of many finite elements. Trans-
formation from element coordinates to global coordinates is developed and
illustrated with both two- and three-dimensional examples. The direct stiffness
method is utilized and two methods for global matrix assembly are presented.
Application of boundary conditions and solution of the resultant constraint equa-
tions is discussed. Use of the basic displacement solution to obtain element strain
and stress is shown as a postprocessing operation.

Chapter 4 introduces the beam/flexure element as a bridge to continuity
requirements for higher-order elements. Slope continuity is introduced and this
requires an adjustment to the assumed interpolation functions to insure continuity.
Nodal load vectors are discussed in the context of discrete and distributed loads,
using the method of work equivalence.

Chapters 2, 3, and 4 introduce the basic procedures of finite-element model-
ing in the context of simple structural elements that should be well-known to the
student from the prerequisite mechanics of materials course. Thus the emphasis
in the early part of the course in which the text is used can be on the finite ele-
ment method without introduction of new physical concepts. The bar and beam
elements can be used to give the student practical truss and frame problems for
solution using available finite element software. If the instructor is so inclined,
the bar and beam elements (in the two-dimensional context) also provide a rela-
tively simple framework for student development of finite element software
using basic programming languages. 

Chapter 5 is the springboard to more advanced concepts of finite element
analysis. The method of weighted residuals is introduced as the fundamental
technique used in the remainder of the text. The Galerkin method is utilized
exclusively since I have found this method is both understandable for under-
graduate students and is amenable to a wide range of engineering problems. The
material in this chapter repeats the bar and beam developments and extends the
finite element concept to one-dimensional heat transfer. Application to the bar
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and beam elements illustrates that the method is in agreement with the basic me-
chanics approach of Chapters 2–4. Introduction of heat transfer exposes the stu-
dent to additional applications of the finite element method that are, most likely,
new to the student.

Chapter 6 is a stand-alone description of the requirements of interpolation
functions used in developing finite element models for any physical problem.
Continuity and completeness requirements are delineated. Natural (serendipity)
coordinates, triangular coordinates, and volume coordinates are defined and used
to develop interpolation functions for several element types in two- and three-
dimensions. The concept of isoparametric mapping is introduced in the context of
the plane quadrilateral element. As a precursor to following chapters, numerical
integration using Gaussian quadrature is covered and several examples included.
The use of two-dimensional elements to model three-dimensional axisymmetric
problems is included.

Chapter 7 uses Galerkin’s finite element method to develop the finite ele-
ment equations for several commonly encountered situations in heat transfer.
One-, two- and three-dimensional formulations are discussed for conduction and
convection. Radiation is not included, as that phenomenon introduces a nonlin-
earity that undergraduate students are not prepared to deal with at the intended
level of the text. Heat transfer with mass transport is included. The finite differ-
ence method in conjunction with the finite element method is utilized to present
methods of solving time-dependent heat transfer problems. 

Chapter 8 introduces finite element applications to fluid mechanics. The
general equations governing fluid flow are so complex and nonlinear that the
topic is introduced via ideal flow. The stream function and velocity potential
function are illustrated and the applicable restrictions noted. Example problems
are included that note the analogy with heat transfer and use heat transfer finite
element solutions to solve ideal flow problems. A brief discussion of viscous
flow shows the nonlinearities that arise when nonideal flows are considered. 

Chapter 9 applies the finite element method to problems in solid mechanics
with the proviso that the material response is linearly elastic and small deflection.
Both plane stress and plane strain are defined and the finite element formulations
developed for each case. General three-dimensional states of stress and axisym-
metric stress are included. A model for torsion of noncircular sections is devel-
oped using the Prandtl stress function. The purpose of the torsion section is to
make the student aware that all torsionally loaded objects are not circular and the
analysis methods must be adjusted to suit geometry.

Chapter 10 introduces the concept of dynamic motion of structures. It is not
presumed that the student has taken a course in mechanical vibrations; as a re-
sult, this chapter includes a primer on basic vibration theory. Most of this mater-
ial is drawn from my previously published text Applied Mechanical Vibrations.
The concept of the mass or inertia matrix is developed by examples of simple
spring-mass systems and then extended to continuous bodies. Both lumped and
consistent mass matrices are defined and used in examples. Modal analysis is the
basic method espoused for dynamic response; hence, a considerable amount of
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text material is devoted to determination of natural modes, orthogonality, and
modal superposition. Combination of finite difference and finite element meth-
ods for solving transient dynamic structural problems is included. 

The appendices are included in order to provide the student with material
that might be new or may be “rusty” in the student’s mind. 

Appendix A is a review of matrix algebra and should be known to the stu-
dent from a course in linear algebra. 

Appendix B states the general three-dimensional constitutive relations for
a homogeneous, isotropic, elastic material. I have found over the years that un-
dergraduate engineering students do not have a firm grasp of these relations. In
general, the student has been exposed to so many special cases that the three-
dimensional equations are not truly understood. 

Appendix C covers three methods for solving linear algebraic equations.
Some students may use this material as an outline for programming solution
methods. I include the appendix only so the reader is aware of the algorithms un-
derlying the software he/she will use in solving finite element problems. 

Appendix D describes the basic computational capabilities of the FEPC
software. The FEPC (FEPfinite element program for the PCpersonal computer)
was developed by the late Dr. Charles Knight of Virginia Polytechnic Institute
and State University and is used in conjunction with this text with permission of
his estate. Dr. Knight’s programs allow analysis of two-dimensional programs
using bar, beam, and plane stress elements. The appendix describes in general
terms the capabilities and limitations of the software. The FEPC program is
available to the student at www.mhhe.com/hutton.

Appendix E includes problems for several chapters of the text that should be
solved via commercial finite element software. Whether the instructor has avail-
able ANSYS, ALGOR, COSMOS, etc., these problems are oriented to systems
having many degrees of freedom and not amenable to hand calculation. Addi-
tional problems of this sort will be added to the website on a continuing basis.

The textbook features a Web site (www.mhhe.com/hutton) with finite ele-
ment analysis links and the FEPC program. At this site, instructors will have
access to PowerPoint images and an Instructors’ Solutions Manual. Instructors
can access these tools by contacting their local McGraw-Hill sales representative
for password information. 

I thank Raghu Agarwal, Rong Y. Chen, Nels Madsen, Robert L. Rankin,
Joseph J. Rencis, Stephen R. Swanson, and Lonny L. Thompson, who reviewed
some or all of the manuscript and provided constructive suggestions and criti-
cisms that have helped improve the book.

I am grateful to all the staff at McGraw-Hill who have labored to make this
project a reality. I especially acknowledge the patient encouragement and pro-
fessionalism of Jonathan Plant, Senior Editor, Lisa Kalner Williams, Develop-
mental Editor, and Kay Brimeyer, Senior Project Manager.

David V. Hutton
Pullman, WA
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Basic Concepts of the
Finite Element Method

1.1 INTRODUCTION
The finite element method (FEM), sometimes referred to as finite element
analysis (FEA), is a computational technique used to obtain approximate solu-
tions of boundary value problems in engineering. Simply stated, a boundary
value problem is a mathematical problem in which one or more dependent vari-
ables must satisfy a differential equation everywhere within a known domain of
independent variables and satisfy specific conditions on the boundary of the
domain. Boundary value problems are also sometimes called field problems. The
field is the domain of interest and most often represents a physical structure.
The field variables are the dependent variables of interest governed by the dif-
ferential equation. The boundary conditions are the specified values of the field
variables (or related variables such as derivatives) on the boundaries of the field.
Depending on the type of physical problem being analyzed, the field variables
may include physical displacement, temperature, heat flux, and fluid velocity to
name only a few.

1.2 HOW DOES THE FINITE ELEMENT
METHOD WORK?

The general techniques and terminology of finite element analysis will be intro-
duced with reference to Figure 1.1. The figure depicts a volume of some material
or materials having known physical properties. The volume represents the
domain of a boundary value problem to be solved. For simplicity, at this point,
we assume a two-dimensional case with a single field variable �(x, y) to be
determined at every point P(x, y) such that a known governing equation (or equa-
tions) is satisfied exactly at every such point. Note that this implies an exact

C H A P T E R 1
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mathematical solution is obtained; that is, the solution is a closed-form algebraic
expression of the independent variables. In practical problems, the domain may
be geometrically complex as is, often, the governing equation and the likelihood
of obtaining an exact closed-form solution is very low. Therefore, approximate
solutions based on numerical techniques and digital computation are most
often obtained in engineering analyses of complex problems. Finite element
analysis is a powerful technique for obtaining such approximate solutions with
good accuracy.

A small triangular element that encloses a finite-sized subdomain of the area
of interest is shown in Figure 1.1b. That this element is not a differential element
of size dx × dy makes this a finite element. As we treat this example as a two-
dimensional problem, it is assumed that the thickness in the z direction is con-
stant and z dependency is not indicated in the differential equation. The vertices
of the triangular element are numbered to indicate that these points are nodes. A
node is a specific point in the finite element at which the value of the field vari-
able is to be explicitly calculated. Exterior nodes are located on the boundaries
of the finite element and may be used to connect an element to adjacent finite
elements. Nodes that do not lie on element boundaries are interior nodes and
cannot be connected to any other element. The triangular element of Figure 1.1b
has only exterior nodes.

P(x, y)

(a)

1 2

3

(b)

(c)

Figure 1.1
(a) A general two-dimensional domain of field variable �(x, y).
(b) A three-node finite element defined in the domain. (c) Additional
elements showing a partial finite element mesh of the domain.
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If the values of the field variable are computed only at nodes, how are values
obtained at other points within a finite element? The answer contains the crux of
the finite element method: The values of the field variable computed at the nodes
are used to approximate the values at nonnodal points (that is, in the element
interior) by interpolation of the nodal values. For the three-node triangle exam-
ple, the nodes are all exterior and, at any other point within the element, the field
variable is described by the approximate relation

�(x , y) = N1(x , y)�1 + N2(x , y)�2 + N3(x , y)�3 (1.1)

where �1, �2, and �3 are the values of the field variable at the nodes, and N1, N2,
and N3 are the interpolation functions, also known as shape functions or blend-
ing functions. In the finite element approach, the nodal values of the field vari-
able are treated as unknown constants that are to be determined. The interpola-
tion functions are most often polynomial forms of the independent variables,
derived to satisfy certain required conditions at the nodes. These conditions are
discussed in detail in subsequent chapters. The major point to be made here is
that the interpolation functions are predetermined, known functions of the inde-
pendent variables; and these functions describe the variation of the field variable
within the finite element.

The triangular element described by Equation 1.1 is said to have 3 degrees
of freedom, as three nodal values of the field variable are required to describe
the field variable everywhere in the element. This would be the case if the field
variable represents a scalar field, such as temperature in a heat transfer problem
(Chapter 7). If the domain of Figure 1.1 represents a thin, solid body subjected to
plane stress (Chapter 9), the field variable becomes the displacement vector and
the values of two components must be computed at each node. In the latter case,
the three-node triangular element has 6 degrees of freedom. In general, the num-
ber of degrees of freedom associated with a finite element is equal to the product
of the number of nodes and the number of values of the field variable (and pos-
sibly its derivatives) that must be computed at each node.

How does this element-based approach work over the entire domain of in-
terest? As depicted in Figure 1.1c, every element is connected at its exterior
nodes to other elements. The finite element equations are formulated such that, at
the nodal connections, the value of the field variable at any connection is the
same for each element connected to the node. Thus, continuity of the field vari-
able at the nodes is ensured. In fact, finite element formulations are such that
continuity of the field variable across interelement boundaries is also ensured.
This feature avoids the physically unacceptable possibility of gaps or voids oc-
curring in the domain. In structural problems, such gaps would represent physi-
cal separation of the material. In heat transfer, a “gap” would manifest itself in
the form of different temperatures at the same physical point.

Although continuity of the field variable from element to element is inherent
to the finite element formulation, interelement continuity of gradients (i.e., de-
rivatives) of the field variable does not generally exist. This is a critical observa-
tion. In most cases, such derivatives are of more interest than are field variable
values. For example, in structural problems, the field variable is displacement but



Hutton: Fundamentals of 
Finite Element Analysis

1. Basic Concepts of the 
Finite Element Method

Text © The McGraw−Hill 
Companies, 2004

4 CHAPTER 1 Basic Concepts of the Finite Element Method

the true interest is more often in strain and stress. As strain is defined in terms of
first derivatives of displacement components, strain is not continuous across ele-
ment boundaries. However, the magnitudes of discontinuities of derivatives can
be used to assess solution accuracy and convergence as the number of elements
is increased, as is illustrated by the following example.

1.2.1 Comparison of Finite Element and Exact Solutions

The process of representing a physical domain with finite elements is referred to
as meshing, and the resulting set of elements is known as the finite element mesh.
As most of the commonly used element geometries have straight sides, it is gen-
erally impossible to include the entire physical domain in the element mesh if the
domain includes curved boundaries. Such a situation is shown in Figure 1.2a,
where a curved-boundary domain is meshed (quite coarsely) using square ele-
ments. A refined mesh for the same domain is shown in Figure 1.2b, using
smaller, more numerous elements of the same type. Note that the refined mesh
includes significantly more of the physical domain in the finite element repre-
sentation and the curved boundaries are more closely approximated. (Triangular
elements could approximate the boundaries even better.)

If the interpolation functions satisfy certain mathematical requirements
(Chapter 6), a finite element solution for a particular problem converges to the
exact solution of the problem. That is, as the number of elements is increased and
the physical dimensions of the elements are decreased, the finite element solution
changes incrementally. The incremental changes decrease with the mesh refine-
ment process and approach the exact solution asymptotically. To illustrate
convergence, we consider a relatively simple problem that has a known solution.
Figure 1.3a depicts a tapered, solid cylinder fixed at one end and subjected to
a tensile load at the other end. Assuming the displacement at the point of load
application to be of interest, a first approximation is obtained by considering
the cylinder to be uniform, having a cross-sectional area equal to the average area

(a) (b)

Figure 1.2
(a) Arbitrary curved-boundary domain modeled using square elements. Stippled
areas are not included in the model. A total of 41 elements is shown. (b) Refined
finite element mesh showing reduction of the area not included in the model. A
total of 192 elements is shown.
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of the cylinder (Figure 1.3b). The uniform bar is a link or bar finite element
(Chapter 2), so our first approximation is a one-element, finite element model.
The solution is obtained using the strength of materials theory. Next, we model
the tapered cylinder as two uniform bars in series, as in Figure 1.3c. In the two-
element model, each element is of length equal to half the total length of the
cylinder and has a cross-sectional area equal to the average area of the corre-
sponding half-length of the cylinder. The mesh refinement is continued using a
four-element model, as in Figure 1.3d, and so on. For this simple problem, the
displacement of the end of the cylinder for each of the finite element models is as
shown in Figure 1.4a, where the dashed line represents the known solution. Con-
vergence of the finite element solutions to the exact solution is clearly indicated.

x

rL

F

ro

r

L

(a) (b)

A �
Ao � AL

2

(c)

Element 1

Element 2

(d)

Figure 1.3
(a) Tapered circular cylinder subjected to tensile loading:
r(x) � r0 � (x/L)(r0 � rL). (b) Tapered cylinder as a single axial
(bar) element using an average area. Actual tapered cylinder
is shown as dashed lines. (c) Tapered cylinder modeled as
two, equal-length, finite elements. The area of each element
is average over the respective tapered cylinder length.
(d) Tapered circular cylinder modeled as four, equal-length
finite elements. The areas are average over the respective
length of cylinder (element length � L�4).
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On the other hand, if we plot displacement as a function of position along the
length of the cylinder, we can observe convergence as well as the approximate
nature of the finite element solutions. Figure 1.4b depicts the exact strength of
materials solution and the displacement solution for the four-element models.
We note that the displacement variation in each element is a linear approximation
to the true nonlinear solution. The linear variation is directly attributable to the
fact that the interpolation functions for a bar element are linear. Second, we note
that, as the mesh is refined, the displacement solution converges to the nonlinear
solution at every point in the solution domain.

The previous paragraph discussed convergence of the displacement of the
tapered cylinder. As will be seen in Chapter 2, displacement is the primary field
variable in structural problems. In most structural problems, however, we are
interested primarily in stresses induced by specified loadings. The stresses must
be computed via the appropriate stress-strain relations, and the strain compo-
nents are derived from the displacement field solution. Hence, strains and
stresses are referred to as derived variables. For example, if we plot the element
stresses for the tapered cylinder example just cited for the exact solution as well
as the finite element solutions for two- and four-element models as depicted in
Figure 1.5, we observe that the stresses are constant in each element and repre-
sent a discontinuous solution of the problem in terms of stresses and strains. We
also note that, as the number of elements increases, the jump discontinuities in
stress decrease in magnitude. This phenomenon is characteristic of the finite ele-
ment method. The formulation of the finite element method for a given problem
is such that the primary field variable is continuous from element to element but

0.25

(b)

0.5 0.75 1.0
x
L

x L
�
(

)

Exact
Four elements

(a)

1

Exact

Number of elements

�
(x

�
L

)

2 3 4

Figure 1.4
(a) Displacement at x � L for tapered cylinder in tension of Figure 1.3. (b) Comparison of the exact solution
and the four-element solution for a tapered cylinder in tension.
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0.5 0.75 1.0
x
L

� �
0

Exact
Two elements
Four elements

Figure 1.5
Comparison of the computed axial stress value in a
tapered cylinder: �0 � F�A0.

the derived variables are not necessarily continuous. In the limiting process of
mesh refinement, the derived variables become closer and closer to continuity.

Our example shows how the finite element solution converges to a known
exact solution (the exactness of the solution in this case is that of strength of
materials theory). If we know the exact solution, we would not be applying the
finite element method! So how do we assess the accuracy of a finite element solu-
tion for a problem with an unknown solution? The answer to this question is not
simple. If we did not have the dashed line in Figure 1.3 representing the exact
solution, we could still discern convergence to a solution. Convergence of a
numerical method (such as the finite element method) is by no means assurance
that the convergence is to the correct solution. A person using the finite element
analysis technique must examine the solution analytically in terms of (1) numeri-
cal convergence, (2) reasonableness (does the result make sense?), (3) whether the
physical laws of the problem are satisfied (is the structure in equilibrium? Does the
heat output balance with the heat input?), and (4) whether the discontinuities in
value of derived variables across element boundaries are reasonable. Many
such questions must be posed and examined prior to accepting the results of a finite
element analysis as representative of a correct solution useful for design purposes.

1.2.2 Comparison of Finite Element and Finite
Difference Methods

The finite difference method is another numerical technique frequently used to
obtain approximate solutions of problems governed by differential equations.
Details of the technique are discussed in Chapter 7 in the context of transient heat



Hutton: Fundamentals of 
Finite Element Analysis

1. Basic Concepts of the 
Finite Element Method

Text © The McGraw−Hill 
Companies, 2004

8 CHAPTER 1 Basic Concepts of the Finite Element Method

transfer. The method is also illustrated in Chapter 10 for transient dynamic analy-
sis of structures. Here, we present the basic concepts of the finite difference
method for purposes of comparison.

The finite difference method is based on the definition of the derivative of a
function f (x ) that is

d f (x )

dx
= lim

�x→0

f (x + �x ) − f (x )

�x
(1.2)

where x is the independent variable. In the finite difference method, as implied
by its name, derivatives are calculated via Equation 1.2 using small, but finite,
values of �x to obtain

d f (x )

dx
≈ f (x + �x ) − f (x )

�x
(1.3)

A differential equation such as

d f

dx
+ x = 0 0 ≤ x ≤ 1 (1.4)

is expressed as

f (x + �x ) − f (x )

�x
+ x = 0 (1.5)

in the finite difference method. Equation 1.5 can be rewritten as

f (x + �x ) = f (x ) − x (�x ) (1.6)

where we note that the equality must be taken as “approximately equals.” From
differential equation theory, we know that the solution of a first-order differential
equation contains one constant of integration. The constant of integration must
be determined such that one given condition (a boundary condition or initial con-
dition) is satisfied. In the current example, we assume that the specified condition
is x (0) = A = constant. If we choose an integration step �x to be a small, con-
stant value (the integration step is not required to be constant), then we can write

xi+1 = xi + �x i = 0, N (1.7)

where N is the total number of steps required to cover the domain. Equation 1.6
is then

fi+1 = fi − xi (�x ) f0 = A i = 0, N (1.8)

Equation 1.8 is known as a recurrence relation and provides an approximation to
the value of the unknown function f (x) at a number of discrete points in the do-
main of the problem.

To illustrate, Figure 1.6a shows the exact solution f (x ) = 1 − x 2/2 and a
finite difference solution obtained with �x = 0.1. The finite difference solution is
shown at the discrete points of function evaluation only. The manner of variation
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of the function between the calculated points is not known in the finite difference
method. One can, of course, linearly interpolate the values to produce an ap-
proximation to the curve of the exact solution but the manner of interpolation is
not an a priori determination in the finite difference method.

To contrast the finite difference method with the finite element method,
we note that, in the finite element method, the variation of the field variable in
the physical domain is an integral part of the procedure. That is, based on the
selected interpolation functions, the variation of the field variable throughout a
finite element is specified as an integral part of the problem formulation. In the
finite difference method, this is not the case: The field variable is computed at
specified points only. The major ramification of this contrast is that derivatives
(to a certain level) can be computed in the finite element approach, whereas the
finite difference method provides data only on the variable itself. In a structural
problem, for example, both methods provide displacement solutions, but the
finite element solution can be used to directly compute strain components (first
derivatives). To obtain strain data in the finite difference method requires addi-
tional considerations not inherent to the mathematical model.

There are also certain similarities between the two methods. The integration
points in the finite difference method are analogous to the nodes in a finite
element model. The variable of interest is explicitly evaluated at such points.
Also, as the integration step (step size) in the finite difference method is reduced,
the solution is expected to converge to the exact solution. This is similar to the
expected convergence of a finite element solution as the mesh of elements is
refined. In both cases, the refinement represents reduction of the mathematical
model from finite to infinitesimal. And in both cases, differential equations are
reduced to algebraic equations.

0.2
0

0

0.2

0.4

0.6

0.8

1

0.4 0.80.6 1
x

f(
x)

Figure 1.6
Comparison of the exact and finite difference
solutions of Equation 1.4 with f0 � A � 1.
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Probably the most descriptive way to contrast the two methods is to note that
the finite difference method models the differential equation(s) of the problem
and uses numerical integration to obtain the solution at discrete points. The finite
element method models the entire domain of the problem and uses known phys-
ical principles to develop algebraic equations describing the approximate solu-
tions. Thus, the finite difference method models differential equations while the
finite element method can be said to more closely model the physical problem at
hand. As will be observed in the remainder of this text, there are cases in which
a combination of finite element and finite difference methods is very useful and
efficient in obtaining solutions to engineering problems, particularly where dy-
namic (transient) effects are important.

1.3 A GENERAL PROCEDURE FOR FINITE
ELEMENT ANALYSIS

Certain steps in formulating a finite element analysis of a physical problem are
common to all such analyses, whether structural, heat transfer, fluid flow, or
some other problem. These steps are embodied in commercial finite element
software packages (some are mentioned in the following paragraphs) and are
implicitly incorporated in this text, although we do not necessarily refer to the
steps explicitly in the following chapters. The steps are described as follows.

1.3.1 Preprocessing

The preprocessing step is, quite generally, described as defining the model and
includes

Define the geometric domain of the problem.
Define the element type(s) to be used (Chapter 6).
Define the material properties of the elements.
Define the geometric properties of the elements (length, area, and the like).
Define the element connectivities (mesh the model).
Define the physical constraints (boundary conditions).
Define the loadings.

The preprocessing (model definition) step is critical. In no case is there a better
example of the computer-related axiom “garbage in, garbage out.” A perfectly
computed finite element solution is of absolutely no value if it corresponds to the
wrong problem.

1.3.2 Solution

During the solution phase, finite element software assembles the governing alge-
braic equations in matrix form and computes the unknown values of the primary
field variable(s). The computed values are then used by back substitution to
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compute additional, derived variables, such as reaction forces, element stresses,
and heat flow.

As it is not uncommon for a finite element model to be represented by tens
of thousands of equations, special solution techniques are used to reduce data
storage requirements and computation time. For static, linear problems, a wave
front solver, based on Gauss elimination (Appendix C), is commonly used. While
a complete discussion of the various algorithms is beyond the scope of this text,
the interested reader will find a thorough discussion in the Bathe book [1].

1.3.3 Postprocessing

Analysis and evaluation of the solution results is referred to as postprocessing.
Postprocessor software contains sophisticated routines used for sorting, printing,
and plotting selected results from a finite element solution. Examples of opera-
tions that can be accomplished include

Sort element stresses in order of magnitude.
Check equilibrium.
Calculate factors of safety.
Plot deformed structural shape.
Animate dynamic model behavior.
Produce color-coded temperature plots.

While solution data can be manipulated many ways in postprocessing, the most
important objective is to apply sound engineering judgment in determining
whether the solution results are physically reasonable.

1.4 BRIEF HISTORY OF THE FINITE
ELEMENT METHOD

The mathematical roots of the finite element method dates back at least a half
century. Approximate methods for solving differential equations using trial solu-
tions are even older in origin. Lord Rayleigh [2] and Ritz [3] used trial functions
(in our context, interpolation functions) to approximate solutions of differential
equations. Galerkin [4] used the same concept for solution. The drawback in the
earlier approaches, compared to the modern finite element method, is that the
trial functions must apply over the entire domain of the problem of concern.
While the Galerkin method provides a very strong basis for the finite element
method (Chapter 5), not until the 1940s, when Courant [5] introduced the con-
cept of piecewise-continuous functions in a subdomain, did the finite element
method have its real start.

In the late 1940s, aircraft engineers were dealing with the invention of the jet
engine and the needs for more sophisticated analysis of airframe structures to
withstand larger loads associated with higher speeds. These engineers, without
the benefit of modern computers, developed matrix methods of force analysis,
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collectively known as the flexibility method, in which the unknowns are the
forces and the knowns are displacements. The finite element method, in its most
often-used form, corresponds to the displacement method, in which the un-
knowns are system displacements in response to applied force systems. In this
text, we adhere exclusively to the displacement method. As will be seen as we
proceed, the term displacement is quite general in the finite element method and
can represent physical displacement, temperature, or fluid velocity, for example.
The term finite element was first used by Clough [6] in 1960 in the context of
plane stress analysis and has been in common usage since that time.

During the decades of the 1960s and 1970s, the finite element method was
extended to applications in plate bending, shell bending, pressure vessels, and
general three-dimensional problems in elastic structural analysis [7–11] as well
as to fluid flow and heat transfer [12, 13]. Further extension of the method to
large deflections and dynamic analysis also occurred during this time period
[14 , 15]. An excellent history of the finite element method and detailed bibliog-
raphy is given by Noor [16].

The finite element method is computationally intensive, owing to the required
operations on very large matrices. In the early years, applications were performed
using mainframe computers, which, at the time, were considered to be very pow-
erful, high-speed tools for use in engineering analysis. During the 1960s, the finite
element software code NASTRAN [17] was developed in conjunction with the
space exploration program of the United States. NASTRAN was the first major
finite element software code. It was, and still is, capable of hundreds of thousands
of degrees of freedom (nodal field variable computations). In the years since the
development of NASTRAN, many commercial software packages have been in-
troduced for finite element analysis. Among these are ANSYS [18], ALGOR [19],
and COSMOS/M [20]. In today’s computational environment, most of these
packages can be used on desktop computers and engineering workstations to
obtain solutions to large problems in static and dynamic structural analysis, heat
transfer, fluid flow, electromagnetics, and seismic response. In this text, we do not
utilize or champion a particular code. Rather, we develop the fundamentals for
understanding of finite element analysis to enable the reader to use such software
packages with an educated understanding.

1.5 EXAMPLES OF FINITE ELEMENT 
ANALYSIS

We now present, briefly, a few examples of the types of problems that can be
analyzed via the finite element method. Figure 1.7 depicts a rectangular region
with a central hole. The area has been “meshed” with a finite element grid of two-
dimensional elements assumed to have a constant thickness in the z direction.
Note that the mesh of elements is irregular: The element shapes (triangles and
quadrilaterals) and sizes vary. In particular, note that around the geometric dis-
continuity of the hole, the elements are of smaller size. This represents not only
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Figure 1.7
A mesh of finite elements over a rectangular region having a
central hole.

an improvement in geometric accuracy in the vicinity of the discontinuity but
also solution accuracy, as is discussed in subsequent chapters.

The geometry depicted in Figure 1.7 could represent the finite element
model of several physical problems. For plane stress analysis, the geometry
would represent a thin plate with a central hole subjected to edge loading in the
plane depicted. In this case, the finite element solution would be used to exam-
ine stress concentration effects in the vicinity of the hole. The element mesh
shown could also represent the case of fluid flow around a circular cylinder. In
yet another application, the model shown could depict a heat transfer fin at-
tached to a pipe (the hole) from which heat is transferred to the fin for dissipa-
tion to the surroundings. In each case, the formulation of the equations govern-
ing physical behavior of the elements in response to external influences is quite
different.

Figure 1.8a shows a truss module that was at one time considered a
building-block element for space station construction [21]. Designed to fold in
accordion fashion into a small volume for transport into orbit, the module, when
deployed, extends to overall dimensions 1.4 m × 1.4 m × 2.8 m. By attaching
such modules end-to-end, a truss of essentially any length could be obtained.
The structure was analyzed via the finite element method to determine the
vibration characteristics as the number of modules, thus overall length, was
varied. As the connections between the various structural members are pin or
ball-and-socket joints, a simple axial tension-compression element (Chapter 2)
was used in the model. The finite element model of one module was composed
of 33 elements. A sample vibration shape of a five-module truss is shown in
Figure 1.8b.

The truss example just described involves a rather large structure modeled
by a small number of relatively large finite elements. In contrast, Figure 1.9
shows the finite element model of a very thin tube designed for use in heat
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Figure 1.8
(a) Deployable truss module showing details of folding joints.
(b) A sample vibration-mode shape of a five-module truss as obtained
via finite element analysis. (Courtesy: AIAA)

14
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0.00197�

Z X

0.25�

0.488�

Figure 1.9
Finite element model of a thin-walled
heat exchanger tube.

transfer in a spacecraft application. The tube has inside diameter of 0.976 in. and
wall thickness 0.00197 in. and overall length 36 in. Materials considered for
construction of the tube were copper and titanium alloys. Owing to the wall
thickness, prototype tubes were found to be very fragile and difficult to handle
without damage. The objectives of the finite element analysis were to examine
the bending, torsional, and buckling loads allowable. The figure shows the finite
element mesh used to model a section of the tube only 0.25 in. in length. This
model contains 1920 three-dimensional solid elements, each having eight nodes
with 3 degrees of freedom at each node. Such a large number of elements was
required for a small structure in consideration of computational accuracy. The
concern here was the so-called aspect ratio of the elements, as is defined and
discussed in subsequent chapters.

As a final example, Figure 1.10a represents the finite element model of the
main load-carrying component of a prosthetic device. The device is intended to
be a hand attachment to an artificial arm. In use, the hand would allow a lower
arm amputee to engage in weight lifting as part of a physical fitness program.
The finite element model was used to determine the stress distribution in the
component in terms of the range of weight loading anticipated, so as to properly
size the component and select the material. Figure 1.10b shows a prototype of the
completed hand design.
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(a)

Figure 1.10
(a) A finite element model of a prosthetic hand for weightlifting. (b) Completed
prototype of a prosthetic hand, attached to a bar. 
(Courtesy of Payam Sadat. All rights reserved.)

1.6 OBJECTIVES OF THE TEXT
I wrote Fundamentals of Finite Element Analysis for use in senior-level finite
element courses in engineering programs. The majority of available textbooks
on the finite element method are written for graduate-level courses. These
texts are heavy on the theory of finite element analysis and rely on mathematical
techniques (notably, variational calculus) that are not usually in the repertoire of
undergraduate engineering students. Knowledge of advanced mathematical tech-
niques is not required for successful use of this text. The prerequisite study is
based on the undergraduate coursework common to most engineering programs:
linear algebra, calculus through differential equations, and the usual series of
statics, dynamics, and mechanics of materials. Although not required, prior study
of fluid mechanics and heat transfer is helpful. Given this assumed background,
the finite element method is developed on the basis of physical laws (equilib-
rium, conservation of mass, and the like), the principle of minimum potential en-
ergy (Chapter 2), and Galerkin’s finite element method (introduced and devel-
oped in Chapter 5).

(b)
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As the reader progresses through the text, he or she will discern that we
cover a significant amount of finite element theory in addition to application
examples. Given the availability of many powerful and sophisticated finite
element software packages, why study the theory? The finite element method is
a tool, and like any other tool, using it without proper instruction can be quite
dangerous. My premise is that the proper instruction in this context includes
understanding the basic theory underlying formulation of finite element models
of physical problems. As stated previously, critical analysis of the results of a
finite element model computation is essential, since those results may eventually
become the basis for design. Knowledge of the theory is necessary for both
proper modeling and evaluation of computational results.
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C H A P T E R 2
Stiffness Matrices, Spring
and Bar Elements

2.1 INTRODUCTION
The primary characteristics of a finite element are embodied in the element
stiffness matrix. For a structural finite element, the stiffness matrix contains the
geometric and material behavior information that indicates the resistance of
the element to deformation when subjected to loading. Such deformation may
include axial, bending, shear, and torsional effects. For finite elements used in
nonstructural analyses, such as fluid flow and heat transfer, the term stiffness
matrix is also used, since the matrix represents the resistance of the element to
change when subjected to external influences. 

This chapter develops the finite element characteristics of two relatively
simple, one-dimensional structural elements, a linearly elastic spring and an elas-
tic tension-compression member. These are selected as introductory elements be-
cause the behavior of each is relatively well-known from the commonly studied
engineering subjects of statics and strength of materials. Thus, the “bridge” to the
finite element method is not obscured by theories new to the engineering student.
Rather, we build on known engineering principles to introduce finite element
concepts. The linear spring and the tension-compression member (hereafter re-
ferred to as a bar element and also known in the finite element literature as a spar,
link, or truss element) are also used to introduce the concept of interpolation
functions. As mentioned briefly in Chapter 1, the basic premise of the finite ele-
ment method is to describe the continuous variation of the field variable (in this
chapter, physical displacement) in terms of discrete values at the finite element
nodes. In the interior of a finite element, as well as along the boundaries (applic-
able to two- and three-dimensional problems), the field variable is described via
interpolation functions (Chapter 6) that must satisfy prescribed conditions.

Finite element analysis is based, dependent on the type of problem, on sev-
eral mathematic/physical principles. In the present introduction to the method,
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we present several such principles applicable to finite element analysis. First, and
foremost, for spring and bar systems, we utilize the principle of static equilib-
rium but—and this is essential—we include deformation in the development;
that is, we are not dealing with rigid body mechanics. For extension of the finite
element method to more complicated elastic structural systems, we also state and
apply the first theorem of Castigliano [1] and the more widely used principle of
minimum potential energy [2]. Castigliano’s first theorem, in the form presented,
may be new to the reader. The first theorem is the counterpart of Castigliano’s
second theorem, which is more often encountered in the study of elementary
strength of materials [3]. Both theorems relate displacements and applied forces
to the equilibrium conditions of a mechanical system in terms of mechanical
energy. The use here of Castigliano’s first theorem is for the distinct purpose of
introducing the concept of minimum potential energy without resort to the higher
mathematic principles of the calculus of variations, which is beyond the mathe-
matical level intended for this text.

2.2 LINEAR SPRING AS A FINITE ELEMENT
A linear elastic spring is a mechanical device capable of supporting axial loading
only and constructed such that, over a reasonable operating range (meaning ex-
tension or compression beyond undeformed length), the elongation or contrac-
tion of the spring is directly proportional to the applied axial load. The constant
of proportionality between deformation and load is referred to as the spring con-
stant, spring rate, or spring stiffness [4], generally denoted as k, and has units
of force per unit length. Formulation of the linear spring as a finite element is
accomplished with reference to Figure 2.1a. As an elastic spring supports axial
loading only, we select an element coordinate system (also known as a local co-
ordinate system) as an x axis oriented along the length of the spring, as shown.
The element coordinate system is embedded in the element and chosen, by geo-
metric convenience, for simplicity in describing element behavior. The element

1 2

u1

kf1 f 2 x

u2

(a) (b)

Fo
rc

e,
 f

Deflection, � � u2 � u1

1
k

Figure 2.1
(a) Linear spring element with nodes, nodal displacements, and nodal forces.
(b) Load-deflection curve.
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or local coordinate system is contrasted with the global coordinate system. The
global coordinate system is that system in which the behavior of a complete
structure is to be described. By complete structure is meant the assembly of
many finite elements (at this point, several springs) for which we desire to com-
pute response to loading conditions. In this chapter, we deal with cases in which
the local and global coordinate systems are essentially the same except for trans-
lation of origin. In two- and three-dimensional cases, however, the distinctions
are quite different and require mathematical rectification of element coordinate
systems to a common basis. The common basis is the global coordinate system.

Returning attention to Figure 2.1a, the ends of the spring are the nodes and
the nodal displacements are denoted by u1 and u2 and are shown in the positive
sense. If these nodal displacements are known, the total elongation or contraction
of the spring is known as is the net force in the spring. At this point in our devel-
opment, we require that forces be applied to the element only at the nodes (dis-
tributed forces are accommodated for other element types later), and these are
denoted as f1 and f2 and are also shown in the positive sense.

Assuming that both the nodal displacements are zero when the spring is un-
deformed, the net spring deformation is given by

� = u2 − u1 (2.1)

and the resultant axial force in the spring is

f = k� = k(u2 − u1) (2.2)

as is depicted in Figure 2.1b.
For equilibrium, f1 + f2 = 0 or f1 = − f2, and we can rewrite Equation 2.2

in terms of the applied nodal forces as

f1 = −k(u2 − u1) (2.3a)

f2 = k(u2 − u1) (2.3b)

which can be expressed in matrix form (see Appendix A for a review of matrix
algebra) as [

k −k

−k k

]{
u1

u2

}
=

{
f1

f2

}
(2.4)

or

[ke]{u} = { f } (2.5)

where

[ke] =
[

k −k

−k k

]
(2.6)

is defined as the element stiffness matrix in the element coordinate system (or
local system), {u} is the column matrix (vector) of nodal displacements, and { f}
is the column matrix (vector) of element nodal forces. (In subsequent chapters,
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the matrix notation is used extensively. A general matrix is designated by
brackets [ ] and a column matrix (vector) by braces { }.)

Equation 2.6 shows that the element stiffness matrix for the linear spring
element is a 2 × 2 matrix. This corresponds to the fact that the element exhibits
two nodal displacements (or degrees of freedom) and that the two displacements
are not independent (that is, the body is continuous and elastic). Furthermore, the
matrix is symmetric. A symmetric matrix has off-diagonal terms such that ki j =
kji. Symmetry of the stiffness matrix is indicative of the fact that the body is lin-
early elastic and each displacement is related to the other by the same physical
phenomenon. For example, if a force F (positive, tensile) is applied at node 2
with node 1 held fixed, the relative displacement of the two nodes is the same as
if the force is applied symmetrically (negative, tensile) at node 1 with node 2
fixed. (Counterexamples to symmetry are seen in heat transfer and fluid flow
analyses in Chapters 7 and 8.) As will be seen as more complicated structural
elements are developed, this is a general result: An element exhibiting N degrees
of freedom has a corresponding N × N, symmetric stiffness matrix.

Next consider solution of the system of equations represented by Equa-
tion 2.4. In general, the nodal forces are prescribed and the objective is to solve
for the unknown nodal displacements. Formally, the solution is represented by

{
u1

u2

}
= [ke]−1

{
f1

f2

}
(2.7)

where [ke]−1 is the inverse of the element stiffness matrix. However, this inverse
matrix does not exist, since the determinant of the element stiffness matrix is
identically zero. Therefore, the element stiffness matrix is singular, and this also
proves to be a general result in most cases. The physical significance of the
singular nature of the element stiffness matrix is found by reexamination of
Figure 2.1a, which shows that no displacement constraint whatever has been im-
posed on motion of the spring element; that is, the spring is not connected to any
physical object that would prevent or limit motion of either node. With no con-
straint, it is not possible to solve for the nodal displacements individually.
Instead, only the difference in nodal displacements can be determined, as this
difference represents the elongation or contraction of the spring element owing
to elastic effects. As discussed in more detail in the general formulation of inter-
polation functions (Chapter 6) and structural dynamics (Chapter 10), a properly
formulated finite element must allow for constant value of the field variable. In
the example at hand, this means rigid body motion. We can see the rigid body
motion capability in terms of a single spring (element) and in the context of sev-
eral connected elements. For a single, unconstrained element, if arbitrary forces
are applied at each node, the spring not only deforms axially but also undergoes
acceleration according to Newton’s second law. Hence, there exists not only
deformation but overall motion. If, in a connected system of spring elements, the
overall system response is such that nodes 1 and 2 of a particular element dis-
place the same amount, there is no elastic deformation of the spring and therefore
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no elastic force in the spring. This physical situation must be included in the
element formulation. The capability is indicated mathematically by singularity
of the element stiffness matrix. As the stiffness matrix is formulated on the basis
of deformation of the element, we cannot expect to compute nodal displacements
if there is no deformation of the element.

Equation 2.7 indicates the mathematical operation of inverting the stiffness
matrix to obtain solutions. In the context of an individual element, the singular
nature of an element stiffness matrix precludes this operation, as the inverse of a
singular matrix does not exist. As is illustrated profusely in the remainder of the
text, the general solution of a finite element problem, in a global, as opposed to
element, context, involves the solution of equations of the form of Equation 2.5. For
realistic finite element models, which are of huge dimension in terms of the matrix
order (N × N) involved, computing the inverse of the stiffness matrix is a very in-
efficient, time-consuming operation, which should not be undertaken except for the
very simplest of systems. Other, more-efficient solution techniques are available,
and these are discussed subsequently. (Many of the end-of-chapter problems
included in this text are of small order and can be efficiently solved via matrix in-
version using “spreadsheet” software functions or software such as MATLAB.)

2.2.1 System Assembly in Global Coordinates

Derivation of the element stiffness matrix for a spring element was based on
equilibrium conditions. The same procedure can be applied to a connected sys-
tem of spring elements by writing the equilibrium equation for each node. How-
ever, rather than drawing free-body diagrams of each node and formally writing
the equilibrium equations, the nodal equilibrium equations can be obtained more
efficiently by considering the effect of each element separately and adding the
element force contribution to each nodal equation. The process is described as
“assembly,” as we take individual stiffness components and “put them together”
to obtain the system equations. To illustrate, via a simple example, the assembly
of element characteristics into global (or system) equations, we next consider the
system of two linear spring elements connected as shown in Figure 2.2.

For generality, it is assumed that the springs have different spring constants
k1 and k2. The nodes are numbered 1, 2, and 3 as shown, with the springs sharing
node 2 as the physical connection. Note that these are global node numbers. The
global nodal displacements are identified as U1, U2, and U3, where the upper case
is used to indicate that the quantities represented are global or system displace-
ments as opposed to individual element displacements. Similarly, applied nodal

1 2

U1

k1 k2
F1 F2 3 F3

U2 U3

1 2

Figure 2.2 System of two springs with node numbers,
element numbers, nodal displacements, and nodal forces.
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Figure 2.3 Free-body diagrams of elements and nodes for the
two-element system of Figure 2.2.

forces are F1, F2, and F3. Assuming the system of two spring elements to be
in equilibrium, we examine free-body diagrams of the springs individually (Fig-
ure 2.3a and 2.3b) and express the equilibrium conditions for each spring, using
Equation 2.4, as [

k1 −k1

−k1 k1

] {
u (1)

1

u (1)
2

}
=

{
f (1)

1

f (1)
2

}
(2.8a)

[
k2 −k2

−k2 k2

] {
u (2)

1

u (2)
2

}
=

{
f (2)

2

f (2)
3

}
(2.8b)

where the superscript is element number.
To begin “assembling” the equilibrium equations describing the behavior

of the system of two springs, the displacement compatibility conditions, which
relate element displacements to system displacements, are written as

u(1)

1 = U1 u(1)

2 = U2 u (2)

1 = U2 u(2)

2 = U3 (2.9)

The compatibility conditions state the physical fact that the springs are con-
nected at node 2, remain connected at node 2 after deformation, and hence, must
have the same nodal displacement at node 2. Thus, element-to-element displace-
ment continuity is enforced at nodal connections. Substituting Equations 2.9 into
Equations 2.8, we obtain[

k1 −k1

−k1 k1

]{
U1

U2

}
=

{
f (1)

1

f (1)
2

}
(2.10a)

and [
k2 −k2

−k2 k2

]{
U2

U3

}
=

{
f (2)

2

f (2)
3

}
(2.10b)

Here, we use the notation f ( j)
i to represent the force exerted on element j at

node i.
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Equation 2.10 is the equilibrium equations for each spring element expressed
in terms of the specified global displacements. In this form, the equations clearly
show that the elements are physically connected at node 2 and have the same dis-
placement U2 at that node. These equations are not yet amenable to direct combi-
nation, as the displacement vectors are not the same. We expand both matrix
equations to 3 × 3 as follows (while formally expressing the facts that element 1
is not connected to node 3 and element 2 is not connected to node 1):

[ k1 −k1 0
−k1 k1 0

0 0 0

]{ U1

U2

0

}
=




f (1)
1

f (1)
2

0


 (2.11)

[ 0 0 0
0 k2 −k2

0 −k2 k2

]{ 0
U2

U3

}
=




0
f (2)

2

f (2)
3


 (2.12)

The addition of Equations 2.11 and 2.12 yields

[ k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

]{ U1

U2

U3

}
=




f (1)
1

f (1)
2 + f (2)

2

f (2)
3


 (2.13)

Next, we refer to the free-body diagrams of each of the three nodes depicted in
Figure 2.3c, 2.3d, and 2.3e. The equilibrium conditions for nodes 1, 2, and 3
show that

f (1)
1 = F1 f (1)

2 + f (2)
2 = F2 f (2)

3 = F3 (2.14)

respectively. Substituting into Equation 2.13, we obtain the final result:[
k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2

]{
U1

U2

U3

}
=

{
F1

F2

F3

}
(2.15)

which is of the form [K ]{U} = {F}, similar to Equation 2.5. However, Equa-
tion 2.15 represents the equations governing the system composed of two con-
nected spring elements. By direct consideration of the equilibrium conditions,
we obtain the system stiffness matrix [K ] (note use of upper case) as

[K ] =
[

k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

]
(2.16)

Note that the system stiffness matrix is (1) symmetric, as is the case with all lin-
ear systems referred to orthogonal coordinate systems; (2) singular, since no
constraints are applied to prevent rigid body motion of the system; and (3) the
system matrix is simply a superposition of the individual element stiffness
matrices with proper assignment of element nodal displacements and associated
stiffness coefficients to system nodal displacements. The superposition proce-
dure is formalized in the context of frame structures in the following paragraphs.
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Consider the two element system depicted in Figure 2.2 given that

Node 1 is attached to a fixed support, yielding the displacement constraint U1 = 0.

k1 = 50 lb./in., k2 = 75 lb./in., F2 = F3 = 75 lb.

for these conditions determine nodal displacements U2 and U3.

■ Solution
Substituting the specified values into Equation 2.15 yields


 50 −50 0

−50 125 −75
0 −75 75







0
U2

U3


 =




F1

75
75




and we note that, owing to the constraint of zero displacement at node 1, nodal force F1

becomes an unknown reaction force. Formally, the first algebraic equation represented in
this matrix equation becomes

−50U2 = F1

and this is known as a constraint equation, as it represents the equilibrium condition
of a node at which the displacement is constrained. The second and third equations
become

[
125 −75
−75 75

]{
U2

U3

}
=

{
75
75

}

which can be solved to obtain U2 = 3 in. and U3 = 4 in. Note that the matrix equations
governing the unknown displacements are obtained by simply striking out the first row
and column of the 3 × 3 matrix system, since the constrained displacement is zero.
Hence, the constraint does not affect the values of the active displacements (we use the
term active to refer to displacements that are unknown and must be computed). Substitu-
tion of the calculated values of U2 and U3 into the constraint equation yields the value
F1 = −150 lb., which value is clearly in equilibrium with the applied nodal forces of
75 lb. each. We also illustrate element equilibrium by writing the equations for each
element as

[
50 −50

−50 50

]{
0
3

}
=

{
f (1)

1

f (1)
2

}
=

{ −150
150

}
lb. for element 1

[
75 −75

−75 75

]{
3
4

}
=

{
f (2)

2

f (2)
3

}
=

{ −75
75

}
lb. for element 2

Example 2.1 illustrates the general procedure for solution of finite element mod-
els: Formulate the system equilibrium equations, apply the specified constraint
conditions, solve the reduced set of equations for the “active” displacements, and
substitute the computed displacements into the constraint equations to obtain the
unknown reactions. While not directly applicable for the spring element, for

EXAMPLE 2.1
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(a)

W

2k

W

k

W

3k

(b)

3k

U1

U2

1

2k 2

U3

U4

k 3

1

2

3

4

Figure 2.4 Example 2.2: elastic
spring supporting weights.

more general finite element formulations, the computed displacements are also
substituted into the strain relations to obtain element strains, and the strains are,
in turn, substituted into the applicable stress-strain equations to obtain element
stress values.

Figure 2.4a depicts a system of three linearly elastic springs supporting three equal
weights W suspended in a vertical plane. Treating the springs as finite elements, deter-
mine the vertical displacement of each weight.

■ Solution
To treat this as a finite element problem, we assign node and element numbers as shown
in Figure 2.4b and ignore, for the moment, that displacement U1 is known to be zero by
the fixed support constraint. Per Equation 2.6, the stiffness matrix of each element is
(preprocessing)

[
k (1)

] =
[

3k −3k
−3k 3k

]

[
k (2)

] =
[

2k −2k
−2k 2k

]

[
k (3)

] =
[

k −k
−k k

]

EXAMPLE 2.2
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The element-to-global displacement relations are

u (1)
1 = U1 u (1)

2 = u (2)
1 = U2 u (2)

2 = u (3)
1 = U3 u (3)

2 = U4

Proceeding as in the previous example, we then write the individual element equations as



3k −3k 0 0
−3k 3k 0 0

0 0 0 0
0 0 0 0







U1

U2

U3

U4




=




f (1)
1

f (1)
2

0
0




(1)




0 0 0 0
0 2k −2k 0
0 −2k 2k 0
0 0 0 0







U1

U2

U3

U4




=




0
f (2)

1

f (2)
2

0




(2)




0 0 0 0
0 0 0 0
0 0 k −k
0 0 −k k







U1

U2

U3

U4




=




0
0

f (3)
1

f (3)
2




(3)

Adding Equations 1–3, we obtain

k




3 −3 0 0
−3 5 −2 0
0 −2 3 −1
0 0 −1 1







U1

U2

U3

U4




=




F1

W
W
W




(4)

where we utilize the fact that the sum of the element forces at each node must equal the
applied force at that node and, at node 1, the force is an unknown reaction.

Applying the displacement constraint U1 = 0 (this is also preprocessing), we obtain

−3kU2 = F1 (5)

as the constraint equation and the matrix equation

k


 5 −2 0

−2 3 −1
0 −1 1







U2

U3

U4


 =




W
W
W


 (6)

for the active displacements. Again note that Equation 6 is obtained by eliminating the
constraint equation from 4 corresponding to the prescribed zero displacement.

Simultaneous solution (the solution step) of the algebraic equations represented by
Equation 6 yields the displacements as

U2 = W

k
U3 = 2W

k
U4 = 3W

k

and Equation 5 gives the reaction force as

F1 = −3W

(This is postprocessing.)
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k 3k 2k

�

F2 � �F

F4 � 2F1

2

3

2

3 4

1

Figure 2.5 Example 2.3: Three-element system with specified
nonzero displacement at node 3.

Note that the solution is exactly that which would be obtained by the usual statics
equations. Also note the general procedure as follows:

Formulate the individual element stiffness matrices.

Write the element to global displacement relations.

Assemble the global equilibrium equation in matrix form.

Reduce the matrix equations according to specified constraints.

Solve the system of equations for the unknown nodal displacements (primary
variables).

Solve for the reaction forces (secondary variable) by back-substitution.

Figure 2.5 depicts a system of three linear spring elements connected as shown. The node
and element numbers are as indicated. Node 1 is fixed to prevent motion, and node 3 is
given a specified displacement � as shown. Forces F2 = −F and F4 = 2F are applied at
nodes 2 and 4. Determine the displacement of each node and the force required at node 3
for the specified conditions. 

■ Solution
This example includes a nonhomogeneous boundary condition. In previous examples, the
boundary conditions were represented by zero displacements. In this example, we have
both a zero (homogeneous) and a specified nonzero (nonhomogeneous) displacement
condition. The algebraic treatment must be different as follows. The system equilibrium
equations are expressed in matrix form (Problem 2.6) as 




k −k 0 0
−k 4k −3k 0
0 −3k 5k −2k
0 0 −2k 2k







U1

U2

U3

U4




=




F1

F2

F3

F4




=




F1

−F
F3

2F




Substituting the specified conditions U1 = 0 and U3 = � results in the system of
equations




k −k 0 0
−k 4k −3k 0
0 −3k 5k −2k
0 0 −2k 2k







0
U2

�

U4




=




F1

−F
F3

2F




EXAMPLE 2.3
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Since U1 = 0, we remove the first row and column to obtain

 4k −3k 0

−3k 5k −2k
0 −2k 2k







U2

�

U4


 =




−F
F3

2F




as the system of equations governing displacements U2 and U4 and the unknown nodal
force F3. This last set of equations clearly shows that we cannot simply strike out the row
and column corresponding to the nonzero specified displacement � because it appears in
the equations governing the active displacements. To illustrate a general procedure, we
rewrite the last matrix equation as


 5k −3k −2k

−3k 4k 0
−2k 0 2k







�

U2

U4


 =




F3

−F
2F




Next, we formally partition the stiffness matrix and write

 5k −3k −2k

−3k 4k 0
−2k 0 2k







�

U2

U4


 =

[
[K��] [K�U ]
[KU �] [KUU ]

]{ {�}
{U}

}
=

{ {F�}
{FU }

}

with

[K��] = [5k]

[K�U ] = [−3k −2k]

[KU �] = [K�U ]T =
[ −3k

−2k

]

[KUU ] =
[

4k 0
0 2k

]

{�} = {�}

{U } =
{

U2

U4

}

{F�} = {F3}

{FU } =
{ −F

2F

}

From the second “row” of the partitioned matrix equations, we have

[KU �]{�} + [KUU ]{U } = {FU }
and this can be solved for the unknown displacements to obtain

{U } = [KUU ]−1({F } − [KU �]{�})
provided that [KUU ]−1 exists. Since the constraints have been applied correctly, this
inverse does exist and is given by

[KUU ]−1 =




1

4k
0

0
1

2k



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Substituting, we obtain the unknown displacements as

{U} =
{

U2

U4

}
=




1

4k
0

0
1

2k




{−F + 3k�

2F + 2k�

}
=




− F

4k
+ 3�

4

F

k
+ �




The required force at node 3 is obtained by substitution of the displacement into the upper
partition to obtain

F3 = − 5

4
F + 3

4
k�

Finally, the reaction force at node 1 is

F1 = −kU2 = F

4
− 3

4
k�

As a check on the results, we substitute the computed and prescribed displacements into
the individual element equations to insure that equilibrium is satisfied.

Element 1 [
k −k

−k k

]{
0

U2

}
=

{−kU2

kU2

}
=




f (1)
1

f (1)
2




which shows that the nodal forces on element 1 are equal and opposite as required for
equilibrium.

Element 2
[

3k −3k
−3k 3k

]{
U2

U3

}
=

[
3k −3k

−3k 3k

]


− F

4k
+ 3

4
�

�




=




−3F

4k
− 3

4
k�

3F

4k
+ 3

4
k�




=
{

f (2)
2

f (2)
3

}

which also verifies equilibrium.

Element 3
[

2k −2k
−2k 2k

]{
U3

U4

}
=

[
2k −2k

−2k 2k

] {
�

F

k
+ �

}
=

{ −2F
2F

}
=

{
f (3)

3

f (3)
4

}

Therefore element 3 is in equilibrium as well.

2.3 ELASTIC BAR, SPAR/LINK/TRUSS ELEMENT
While the linear elastic spring serves to introduce the concept of the stiffness ma-
trix, the usefulness of such an element in finite element analysis is rather limited.
Certainly, springs are used in machinery in many cases and the availability of a
finite element representation of a linear spring is quite useful in such cases. The



Hutton: Fundamentals of 
Finite Element Analysis

2. Stiffness Matrices, 
Spring and Bar Elements

Text © The McGraw−Hill 
Companies, 2004

32 CHAPTER 2 Stiffness Matrices, Spring and Bar Elements

spring element is also often used to represent the elastic nature of supports for
more complicated systems. A more generally applicable, yet similar, element is
an elastic bar subjected to axial forces only. This element, which we simply call
a bar element, is particularly useful in the analysis of both two- and three-
dimensional frame or truss structures. Formulation of the finite element charac-
teristics of an elastic bar element is based on the following assumptions:

1. The bar is geometrically straight.
2. The material obeys Hooke’s law.
3. Forces are applied only at the ends of the bar.
4. The bar supports axial loading only; bending, torsion, and shear are not

transmitted to the element via the nature of its connections to other
elements.

The last assumption, while quite restrictive, is not impractical; this condition is
satisfied if the bar is connected to other structural members via pins (2-D) or ball-
and-socket joints (3-D). Assumptions 1 and 4, in combination, show that this is
inherently a one-dimensional element, meaning that the elastic displacement of
any point along the bar can be expressed in terms of a single independent vari-
able. As will be seen, however, the bar element can be used in modeling both
two- and three-dimensional structures. The reader will recognize this element
as the familiar two-force member of elementary statics, meaning, for equilib-
rium, the forces exerted on the ends of the element must be colinear, equal in
magnitude, and opposite in sense.

Figure 2.6 depicts an elastic bar of length L to which is affixed a uniaxial
coordinate system x with its origin arbitrarily placed at the left end. This is the
element coordinate system or reference frame. Denoting axial displacement at
any position along the length of the bar as u(x), we define nodes 1 and 2 at each
end as shown and introduce the nodal displacements u1 = u(x = 0) and
u2 = u(x = L ) . Thus, we have the continuous field variable u(x), which is to be
expressed (approximately) in terms of two nodal variables u1 and u2. To accom-
plish this discretization, we assume the existence of interpolation functions
N1(x ) and N2(x ) (also known as shape or blending functions) such that 

u(x ) = N1(x )u1 + N2(x )u2 (2.17)

21

u1 u2

x
x u(x)

L

Figure 2.6 A bar (or truss) element with element
coordinate system and nodal displacement
notation.
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(It must be emphasized that, although an equality is indicated by Equation 2.17,
the relation, for finite elements in general, is an approximation. For the bar ele-
ment, the relation, in fact, is exact.) To determine the interpolation functions, we
require that the boundary values of u(x ) (the nodal displacements) be identically
satisfied by the discretization such that

u(x = 0) = u1 u(x = L ) = u2 (2.18)

Equations 2.17 and 2.18 lead to the following boundary (nodal) conditions:

N1(0) = 1 N2(0) = 0 (2.19)

N1(L ) = 0 N2(L ) = 1 (2.20)

which must be satisfied by the interpolation functions. It is required that the dis-
placement expression, Equation 2.17, satisfy the end (nodal) conditions identi-
cally, since the nodes will be the connection points between elements and the
displacement continuity conditions are enforced at those connections. As we
have two conditions that must be satisfied by each of two one-dimensional func-
tions, the simplest forms for the interpolation functions are polynomial forms:

N1(x ) = a0 + a1x (2.21)

N2(x ) = b0 + b1x (2.22)

where the polynomial coefficients are to be determined via satisfaction of the
boundary (nodal) conditions. We note here that any number of mathematical
forms of the interpolation functions could be assumed while satisfying the
required conditions. The reasons for the linear form is explained in detail in
Chapter 6. 

Application of conditions represented by Equation 2.19 yields a0 = 1,
b0 = 0 while Equation 2.20 results in a1 = −(1/L ) and b1 = x/L . Therefore,
the interpolation functions are

N1(x ) = 1 − x/L (2.23)

N2(x ) = x/L (2.24)

and the continuous displacement function is represented by the discretization

u(x ) = (1 − x/L )u1 + (x/L )u2 (2.25)

As will be found most convenient subsequently, Equation 2.25 can be expressed
in matrix form as 

u(x ) = [N1(x ) N2(x )]
{ u1

u2

}
= [N ] {u} (2.26)

where [N ] is the row matrix of interpolation functions and {u} is the column
matrix (vector) of nodal displacements.

Having expressed the displacement field in terms of the nodal variables, the
task remains to determine the relation between the nodal displacements and
applied forces to obtain the stiffness matrix for the bar element. Recall from
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elementary strength of materials that the deflection � of an elastic bar of length L
and uniform cross-sectional area A when subjected to axial load P is given by

� = PL

AE
(2.27)

where E is the modulus of elasticity of the material. Using Equation 2.27, we
obtain the equivalent spring constant of an elastic bar as 

k = P

�
= AE

L
(2.28)

and could, by analogy with the linear elastic spring, immediately write the stiff-
ness matrix as Equation 2.6. While the result is exactly correct, we take a more
general approach to illustrate the procedures to be used with more complicated
element formulations.

Ultimately, we wish to compute the nodal displacements given some loading
condition on the element. To obtain the necessary equilibrium equations relating
the displacements to applied forces, we proceed from displacement to strain,
strain to stress, and stress to loading, as follows. In uniaxial loading, as in the bar
element, we need consider only the normal strain component, defined as

εx = du

dx
(2.29)

which, when applied to Equation 2.25, gives

εx = u2 − u1

L
(2.30)

which shows that the spar element is a constant strain element. This is in accord
with strength of materials theory: The element has constant cross-sectional area
and is subjected to constant forces at the end points, so the strain does not vary
along the length. The axial stress, by Hooke’s law, is then

�x = Eεx = E
u2 − u1

L
(2.31)

and the associated axial force is

P = �x A = AE

L
(u2 − u1) (2.32)

Taking care to observe the correct algebraic sign convention, Equation 2.32 is
now used to relate the applied nodal forces f1 and f2 to the nodal displacements
u1 and u2. Observing that, if Equation 2.32 has a positive sign, the element is in
tension and nodal force f2 must be in the positive coordinate direction while
nodal force f1 must be equal and opposite for equilibrium; therefore,

f1 = − AE

L
(u2 − u1) (2.33)

f2 = AE

L
(u2 − u1) (2.34)
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Equations 2.33 and 2.34 are expressed in matrix form as

AE

L

[
1 −1

−1 1

]{
u1

u2

}
=

{
f1

f2

}
(2.35)

Comparison of Equation 2.35 to Equation 2.4 shows that the stiffness matrix for
the bar element is given by

[ke] = AE

L

[
1 −1

−1 1

]
(2.36)

As is the case with the linear spring, we observe that the element stiffness matrix
for the bar element is symmetric, singular, and of order 2 × 2 in correspondence
with two nodal displacements or degrees of freedom. It must be emphasized that
the stiffness matrix given by Equation 2.36 is expressed in the element coordi-
nate system, which in this case is one-dimensional. Application of this element
formulation to analysis of two- and three-dimensional structures is considered in
the next chapter.

Figure 2.7a depicts a tapered elastic bar subjected to an applied tensile load P at one end
and attached to a fixed support at the other end. The cross-sectional area varies linearly
from A0 at the fixed support at x = 0 to A0/2 at x = L . Calculate the displacement of the
end of the bar (a) by modeling the bar as a single element having cross-sectional area
equal to the area of the actual bar at its midpoint along the length, (b) using two bar
elements of equal length and similarly evaluating the area at the midpoint of each, and
(c) using integration to obtain the exact solution.

■ Solution
(a) For a single element, the cross-sectional area is 3A0/4 and the element “spring

constant” is

k = AE

L
= 3A0 E

4L

and the element equations are

3A0 E

4L

[
1 −1

−1 −1

] {
U1

U2

}
=

{
F1

P

}

The element and nodal displacements are as shown in Figure 2.7b. Applying the
constraint condition U1 = 0, we find

U2 = 4PL

3A0 E
= 1.333

PL

A0 E

as the displacement at x = L .
(b) Two elements of equal length L/2 with associated nodal displacements are

depicted in Figure 2.7c. For element 1, A1 = 7A0/8 so

k1 = A1E

L 1
= 7A0 E

8(L/2)
= 7A0 E

4L

EXAMPLE 2.4
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Figure 2.7
(a) Tapered axial bar, (b) one-element model, (c) two-element model, (d) free-body diagram
for an exact solution, (e) displacement solutions, (f) stress solutions.
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while for element 2, we have

A1 = 5A0

8
and k2 = A2 E

L 2
= 5A0 E

8(L/2)
= 5A0 E

4L

Since no load is applied at the center of the bar, the equilibrium equations for the
system of two elements is


 k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2







U1

U2

U3


 =




F1

0
P




Applying the constraint condition U1 = 0 results in[
k1 + k2 −k2

−k2 k2

]{
U2

U3

}
=

{
0
P

}

Adding the two equations gives 

U2 = P

k1
= 4PL

7A0 E

and substituting this result into the first equation results in

U3 = k1 + k2

k2
= 48PL

35A0 E
= 1.371

PL

A0 E

(c) To obtain the exact solution, we refer to Figure 2.7d, which is a free-body diagram of
a section of the bar between an arbitrary position x and the end x = L. For equilibrium,

�x A = P and since A = A(x ) = A0

(
1 − x

2L

)

the axial stress variation along the length of the bar is described by

�x = P

A0

(
1 − x

2L

)

Therefore, the axial strain is 

εx = �x

E
= P

EA0

(
1 − x

2L

)

Since the bar is fixed at x = 0, the displacement at x = L is given by

� =
L∫

0

εx dx = P

EA0

L∫

0

dx(
1 − x

2L

)

= 2PL

EA0
[−ln(2L − x )]

∣∣L

0
= 2PL

EA0
[ln(2L ) − ln L ] = 2PL

EA0
ln 2 = 1.386

PL

A0 E
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Comparison of the results of parts b and c reveals that the two element solution
exhibits an error of only about 1 percent in comparison to the exact solution from
strength of materials theory. Figure 2.7e shows the displacement variation along the
length for the three solutions. It is extremely important to note, however, that the
computed axial stress for the finite element solutions varies significantly from that of
the exact solution. The axial stress for the two-element solution is shown in Fig-
ure 2.7f, along with the calculated stress from the exact solution. Note particularly
the discontinuity of calculated stress values for the two elements at the connecting
node. This is typical of the derived, or secondary, variables, such as stress and strain,
as computed in the finite element method. As more and more smaller elements are
used in the model, the values of such discontinuities decrease, indicating solution
convergence. In structural analyses, the finite element user is most often more inter-
ested in stresses than displacements, hence it is essential that convergence of the
secondary variables be monitored.

2.4 STRAIN ENERGY, CASTIGLIANO’S 
FIRST THEOREM

When external forces are applied to a body, the mechanical work done by those
forces is converted, in general, into a combination of kinetic and potential ener-
gies. In the case of an elastic body constrained to prevent motion, all the work
is stored in the body as elastic potential energy, which is also commonly
referred to as strain energy. Here, strain energy is denoted Ue and mechanical
work W. From elementary statics, the mechanical work performed by a force �F
as its point of application moves along a path from position 1 to position 2 is
defined as

W =
2∫

1

�F · d�r (2.37)

where

d�r = dx�i + dy �j + dz�k (2.38)

is a differential vector along the path of motion. In Cartesian coordinates, work
is given by

W =
x2∫

x1

Fx dx +
y2∫

y1

Fy dy +
z2∫

z1

Fz dz (2.39)

where Fx , Fy , and Fz are the Cartesian components of the force vector.
For linearly elastic deformations, deflection is directly proportional to ap-

plied force as, for example, depicted in Figure 2.8 for a linear spring. The slope
of the force-deflection line is the spring constant such that F = k�. Therefore,
the work required to deform such a spring by an arbitrary amount �0 from its
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Fo
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e,
F

Deflection, �

1
k

Figure 2.8 Force-deflection
relation for a linear elastic
spring.

free length is

W =
�0∫

0

F d� =
�0∫

0

k� d� = 1

2
k�2

0 = Ue (2.40)

and we observe that the work and resulting elastic potential energy are quadratic
functions of displacement and have the units of force-length. This is a general
result for linearly elastic systems, as will be seen in many examples throughout
this text.

Utilizing Equation 2.28, the strain energy for an axially loaded elastic bar
fixed at one end can immediately be written as

Ue = 1

2
k�2 = 1

2

AE

L
�2 (2.41)

However, for a more general purpose, this result is converted to a different form
(applicable to a bar element only) as follows:

Ue = 1

2
k�2 = 1

2

AE

L

(
PL

AE

)2

= 1

2

(
P

A

)(
P

AE

)
AL = 1

2
�εV (2.42)

where V is the total volume of deformed material and the quantity 1
2 �ε is strain

energy per unit volume, also known as strain energy density. In Equation 2.42,
stress and strain values are those corresponding to the final value of applied
force. The factor 1

2 arises from the linear relation between stress and strain as the
load is applied from zero to the final value P. In general, for uniaxial loading, the
strain energy per unit volume ue is defined by

ue =
ε∫

0

� dε (2.43)

which is extended to more general states of stress in subsequent chapters. We note
that Equation 2.43 represents the area under the elastic stress-strain diagram.
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Presently, we will use the work-strain energy relation to obtain the govern-
ing equations for the bar element using the following theorem.

Castigliano’s First Theorem [1]

For an elastic system in equilibrium, the partial derivative of total strain energy
with respect to deflection at a point is equal to the applied force in the direction
of the deflection at that point.

Consider an elastic body subjected to N forces Fj for which the total strain
energy is expressed as

Ue = W =
N∑

j=1

�j∫
0

Fj d�j (2.44)

where �j is the deflection at the point of application of force Fj in the direction of
the line of action of the force. If all points of load application are fixed except
one, say, i, and that point is made to deflect an infinitesimal amount ��i by an
incremental infinitesimal force �Fi , the change in strain energy is

�Ue = �W = Fi��i +
��i∫
0

�Fi d�i (2.45)

where it is assumed that the original force Fi is constant during the infinitesimal
change. The integral term in Equation 2.45 involves the product of infinitesimal
quantities and can be neglected to obtain

�Ue

��i
= Fi (2.46)

which in the limit as ��i approaches zero becomes

∂U

∂�i
= Fi (2.47)

The first theorem of Castigliano is a powerful tool for finite element formu-
lation, as is now illustrated for the bar element. Combining Equations 2.30, 2.31,
and 2.43, total strain energy for the bar element is given by

Ue = 1

2
�x εx V = 1

2
E

(
u2 − u1

L

)2

AL (2.48)

Applying Castigliano’s theorem with respect to each displacement yields

∂Ue

∂u1
= AE

L
(u1 − u2) = f1 (2.49)

∂Ue

∂u2
= AE

L
(u2 − u1) = f2 (2.50)

which are observed to be identical to Equations 2.33 and 2.34.
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The first theorem of Castigliano is also applicable to rotational displace-
ments. In the case of rotation, the partial derivative of strain energy with respect
to a rotational displacement is equal to the moment/torque applied at the point of
concern in the sense of the rotation. The following example illustrates the appli-
cation in terms of a simple torsional member.

A solid circular shaft of radius R and length L is subjected to constant torque T. The shaft
is fixed at one end, as shown in Figure 2.9. Formulate the elastic strain energy in terms of
the angle of twist � at x = L and show that Castigliano’s first theorem gives the correct
expression for the applied torque.

■ Solution
From strength of materials theory, the shear stress at any cross section along the length of
the member is given by

� = Tr

J
where r is radial distance from the axis of the member and J is polar moment of inertia of
the cross section. For elastic behavior, we have

� = �

G
= Tr

JG

where G is the shear modulus of the material, and the strain energy is then

Ue = 1

2

∫
V

�� dV = 1

2

L∫
0


∫

A

(
Tr

J

)(
Tr

JG

)
dA


dx

= T 2

2J 2G

L∫
0

∫
A

r2 dA dx = T 2 L

2JG

where we have used the definition of the polar moment of inertia

J =
∫

A

r 2 d A

L T

R

Figure 2.9 Example 2.5:
Circular cylinder subjected to
torsion.

EXAMPLE 2.5
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Again invoking the strength of materials results, the angle of twist at the end of the mem-
ber is known to be

� = TL

JG

so the strain energy can be written as

Ue = 1

2

L

JG

(
JG�

L

)2

= JG

2L
�2

Per Castangliano’s first theorem,

∂Ue

∂�
= T = JG�

L

which is exactly the relation shown by strength of materials theory. The reader may think
that we used circular reasoning in this example, since we utilized many previously known
results. However, the formulation of strain energy must be based on known stress and
strain relationships, and the application of Castigliano’s theorem is, indeed, a different
concept.

For linearly elastic systems, formulation of the strain energy function in
terms of displacements is relatively straightforward. As stated previously, the
strain energy for an elastic system is a quadratic function of displacements. The
quadratic nature is simplistically explained by the facts that, in elastic deforma-
tion, stress is proportional to force (or moment or torque), stress is proportional
to strain, and strain is proportional to displacement (or rotation). And, since the
elastic strain energy is equal to the mechanical work expended, a quadratic func-
tion results. Therefore, application of Castigliano’s first theorem results in linear
algebraic equations that relate displacements to applied forces. This statement
follows from the fact that a derivative of a quadratic term is linear. The coeffi-
cients of the displacements in the resulting equations are the components of the
stiffness matrix of the system for which the strain energy function is written.
Such an energy-based approach is the simplest, most-straightforward method for
establishing the stiffness matrix of many structural finite elements.

(a) Apply Castigliano’s first theorem to the system of four spring elements depicted in
Figure 2.10 to obtain the system stiffness matrix. The vertical members at nodes 2
and 3 are to be considered rigid.

(b) Solve for the displacements and the reaction force at node 1 if 

k1 = 4 N/mm k2 = 6 N/mm k3 = 3 N/mm

F2 = − 30 N F3 = 0 F4 = 50 N

EXAMPLE 2.6
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F2 F4

k2

k2

k1 k31

2 3
4

Figure 2.10 Example 2.6: Four spring elements.

■ Solution
(a) The total strain energy of the system of four springs is expressed in terms of the

nodal displacements and spring constants as

Ue = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]
+ 1

2
k3(U4 − U3)2

Applying Castigliano’s theorem, using each nodal displacement in turn,

∂Ue

∂U1
= F1 = k1(U2 − U1)(−1) = k1(U1 − U2)

∂Ue

∂U2
= F2 = k1(U2 − U1) + 2k2(U3 − U2)(−1) = −k1U1 + (k1 + 2k2)U2 − 2k2U3

∂Ue

∂U3
= F3 = 2k2(U3 − U2) + k3(U4 − U3)(−1) = −2k2U2 + (2k2 + k3)U3 − k3U4

∂Ue

∂U4
= F4 = k3(U4 − U3) = −k3U3 + k3U4

which can be written in matrix form as




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4




=




F1

F2

F3

F4




and the system stiffness matrix is thus obtained via Castigliano’s theorem.
(b) Substituting the specified numerical values, the system equations become




4 −4 0 0
−4 16 −12 0
0 −12 15 −3
0 0 −3 3







0
U2

U3

U4




=




F1

−30
0
50




Eliminating the constraint equation, the active displacements are governed by

 16 −12 0

−12 15 −3
0 −3 3







U2

U3

U4


 =




−30
0
50




which we solve by manipulating the equations to convert the coefficient matrix (the
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stiffness matrix) to upper-triangular form; that is, all terms below the main
diagonal become zero.

Step 1. Multiply the first equation (row) by 12, multiply the second equation (row) by
16, add the two and replace the second equation with the resulting equation
to obtain


 16 −12 0

0 96 −48
0 −3 3







U2

U3

U4


 =




−30
−360

50




Step 2. Multiply the third equation by 32, add it to the second equation, and replace
the third equation with the result. This gives the triangularized form desired:


 16 −12 0

0 96 −48
0 0 48







U2

U3

U4


 =




−30
−360
1240




In this form, the equations can now be solved from the “bottom to the top,” and it will be
found that, at each step, there is only one unknown. In this case, the sequence is

U4 = 1240

48
= 25.83 mm

U3 = 1

96
[−360 + 48(25.83)] = 9.17 mm

U2 = 1

16
[−30 + 12(9.17)] = 5.0 mm

The reaction force at node 1 is obtained from the constraint equation

F1 = −4U2 = −4(5.0) = −20 N

and we observe system equilibrium since the external forces sum to zero as required.

2.5 MINIMUM POTENTIAL ENERGY
The first theorem of Castigliano is but a forerunner to the general principle of
minimum potential energy. There are many ways to state this principle, and it has
been proven rigorously [2]. Here, we state the principle without proof but expect
the reader to compare the results with the first theorem of Castigliano. The prin-
ciple of minimum potential energy is stated as follows:

Of all displacement states of a body or structure, subjected to external loading,
that satisfy the geometric boundary conditions (imposed displacements), the dis-
placement state that also satisfies the equilibrium equations is such that the total
potential energy is a minimum for stable equilibrium.
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We emphasize that the total potential energy must be considered in applica-
tion of this principle. The total potential energy includes the stored elastic poten-
tial energy (the strain energy) as well as the potential energy of applied loads. As
is customary, we use the symbol � for total potential energy and divide the total
potential energy into two parts, that portion associated with strain energy Ue and
the portion associated with external forces UF. The total potential energy is

� = Ue + UF (2.51)

where it is to be noted that the term external forces also includes moments and
torques.

In this text, we will deal only with elastic systems subjected to conservative
forces. A conservative force is defined as one that does mechanical work
independent of the path of motion and such that the work is reversible or recov-
erable. The most common example of a nonconservative force is the force of
sliding friction. As the friction force always acts to oppose motion, the work
done by friction forces is always negative and results in energy loss. This loss
shows itself physically as generated heat. On the other hand, the mechanical
work done by a conservative force, Equation 2.37, is reversed, and therefore
recovered, if the force is released. Therefore, the mechanical work of a conserv-
ative force is considered to be a loss in potential energy; that is,

UF = −W (2.52)

where W is the mechanical work defined by the scalar product integral of Equa-
tion 2.37. The total potential energy is then given by

� = Ue − W (2.53)

As we show in the following examples and applications to solid mechanics
in Chapter 9, the strain energy term Ue is a quadratic function of system dis-
placements and the work term W is a linear function of displacements. Rigor-
ously, the minimization of total potential energy is a problem in the calculus of
variations [5]. We do not suppose that the intended audience of this text is
familiar with the calculus of variations. Rather, we simply impose the minimiza-
tion principle of calculus of multiple variable functions. If we have a total poten-
tial energy expression that is a function of, say, N displacements Ui , i = 1, . . . , N;
that is,

� = �(U1, U2, . . . , UN ) (2.54)

then the total potential energy will be minimized if 

∂�

∂Ui
= 0 i = 1, . . . , N (2.55)

Equation 2.55 will be shown to represent N algebraic equations, which form the
finite element approximation to the solution of the differential equation(s) gov-
erning the response of a structural system.
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Repeat the solution to Example 2.6 using the principle of minimum potential energy.

■ Solution
Per the previous example solution, the elastic strain energy is

Ue = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]
+ 1

2
k3(U4 − U3)2

and the potential energy of applied forces is

UF = −W = −F1U1 − F2U2 − F3U3 − F4U4

Hence, the total potential energy is expressed as

� = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]

+ 1

2
k3(U4 − U3)2 − F1U1 − F2U2 − F3U3 − F4U4

In this example, the principle of minimum potential energy requires that

∂�

∂Ui
= 0 i = 1, 4

giving in sequence i = 1, 4, the algebraic equations

∂�

∂U1
= k1(U2 − U1)(−1) − F1 = k1(U1 − U2) − F1 = 0

∂�

∂U2
= k1(U2 − U1) + 2k2(U3 − U2)(−1) − F2

= −k1U1 + (k1 + 2k2)U2 − 2k2U3 − F2 = 0

∂�

∂U3
= 2k2(U3 − U2) + k3(U4 − U3)(−1) − F3

= −2k2U2 + (2k2 + k3)U3 − k3U4 − F3 = 0

∂�

∂U4
= k3(U4 − U3) − F4 = −k3U3 + k3U4 − F4 = 0

which, when written in matrix form, are



k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4




=




F1

F2

F3

F4




and can be seen to be identical to the previous result. Consequently, we do not resolve the
system numerically, as the results are known.

EXAMPLE 2.7
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We now reexamine the energy equation of the Example 2.7 to develop a more-
general form, which will be of significant value in more complicated systems to
be discussed in later chapters. The system or global displacement vector is

{U} =




U1

U2

U3

U4


 (2.56)

and, as derived, the global stiffness matrix is 

[K ] =




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3


 (2.57)

If we form the matrix triple product

1

2
{U }T [K ]{U } = 1

2
[ U1 U2 U3 U4 ]

×




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4


 (2.58)

and carry out the matrix operations, we find that the expression is identical to the
strain energy of the system. As will be shown, the matrix triple product of Equa-
tion 2.58 represents the strain energy of any elastic system. If the strain energy
can be expressed in the form of this triple product, the stiffness matrix will have
been obtained, since the displacements are readily identifiable.

2.6 SUMMARY
Two linear mechanical elements, the idealized elastic spring and an elastic tension-
compression member (bar) have been used to introduce the basic concepts involved in
formulating the equations governing a finite element. The element equations are obtained
by both a straightforward equilibrium approach and a strain energy method using the first
theorem of Castigliano. The principle of minimum potential also is introduced. The next
chapter shows how the one-dimensional bar element can be used to demonstrate the finite
element model assembly procedures in the context of some simple two- and three-
dimensional structures.
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PROBLEMS
2.1–2.3 For each assembly of springs shown in the accompanying figures

(Figures P2.1–P2.3), determine the global stiffness matrix using the system
assembly procedure of Section 2.2.

Figure P2.1

Figure P2.2

Figure P2.3

2.4 For the spring assembly of Figure P2.4, determine force F3 required to displace
node 2 an amount � = 0.75 in. to the right. Also compute displacement of
node 3. Given

k1 = 50 lb./in. and k2 = 25 lb./in.

Figure P2.4

2.5 In the spring assembly of Figure P2.5, forces F2 and F4 are to be applied such
that the resultant force in element 2 is zero and node 4 displaces an amount

F3

k1 k2

1 2 3

�

k1 k2 k3

1 2 4
…

3

kN�2 kN�1

N � 1 N

k3

k3

k1 k2

1 2 3
4

k1 k2 k3

1 2 43
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� = 1 in. Determine (a) the required values of forces F2 and F4, (b) displacement
of node 2, and (c) the reaction force at node 1.

Figure P2.5

2.6 Verify the global stiffness matrix of Example 2.3 using (a) direct assembly and
(b) Castigliano’s first theorem.

2.7 Two trolleys are connected by the arrangement of springs shown in Figure P2.7.
(a) Determine the complete set of equilibrium equations for the system in the
form [K ]{U } = {F }. (b) If k = 50 lb./in., F1 = 20 lb., and F2 = 15 lb., compute
the displacement of each trolley and the force in each spring.

Figure P2.7

2.8 Use Castigliano’s first theorem to obtain the matrix equilibrium equations for the
system of springs shown in Figure P2.8.

Figure P2.8

2.9 In Problem 2.8, let k1 = k2 = k3 = k4 = 10 N/mm, F2 = 20 N, F3 = 25 N,
F4 = 40 N and solve for (a) the nodal displacements, (b) the reaction forces at
nodes 1 and 5, and (c) the force in each spring.

2.10 A steel rod subjected to compression is modeled by two bar elements, as shown
in Figure P2.10. Determine the nodal displacements and the axial stress in each
element. What other concerns should be examined?

Figure P2.10

1 2 3

12 kN
0.5 m 0.5 m

E � 207 GPa        A � 500 mm2

k1 k2
1 2 3 k3

4 k4
5

F2 F3 F4

F2

F1

k
2k

2k

k

k1 � k3 � 30 lb./in. k2 � 40 lb./in.

F4

k1 k2

1 2 3

k3

4

F2 �
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2.11 Figure P2.11 depicts an assembly of two bar elements made of different
materials. Determine the nodal displacements, element stresses, and the
reaction force.

Figure P2.11

2.12 Obtain a four-element solution for the tapered bar of Example 2.4. Plot element
stresses versus the exact solution. Use the following numerical values:

E = 10 × 106 lb./in.2 A0 = 4 in.2 L = 20 in. P = 4000 lb.

2.13 A weight W is suspended in a vertical plane by a linear spring having spring
constant k. Show that the equilibrium position corresponds to minimum total
potential energy.

2.14 For a bar element, it is proposed to discretize the displacement function as

u(x ) = N1(x )u1 + N2(x )u2

with interpolation functions

N1(x ) = cos
	x

2L

N2(x ) = sin
	x

2L

Are these valid interpolation functions? (Hint: Consider strain and stress
variations.)

2.15 The torsional element shown in Figure P2.15 has a solid circular cross section
and behaves elastically. The nodal displacements are rotations �1 and �2 and the
associated nodal loads are applied torques T1 and T2. Use the potential energy
principle to derive the element equations in matrix form.

Figure P2.15

�2, T2

�1, T1

L

R

A1 � 4 in.2

E1 � 15 
 106 lb./in.2

L1 � 20 in.

A2 � 2.25 in.2

E2 � 10 
 106 lb./in.2

L2 � 20 in.

1 2
3

20,000 lb.

A1, E1, L1 A2, E2, L2
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C H A P T E R 3
Truss Structures:
The Direct Stiffness
Method

3.1 INTRODUCTION
The simple line elements discussed in Chapter 2 introduced the concepts of
nodes, nodal displacements, and element stiffness matrices. In this chapter, cre-
ation of a finite element model of a mechanical system composed of any number
of elements is considered. The discussion is limited to truss structures, which we
define as structures composed of straight elastic members subjected to axial
forces only. Satisfaction of this restriction requires that all members of the truss
be bar elements and that the elements be connected by pin joints such that each
element is free to rotate about the joint. Although the bar element is inherently
one dimensional, it is quite effectively used in analyzing both two- and three-
dimensional trusses, as is shown.

The global coordinate system is the reference frame in which displace-
ments of the structure are expressed and usually chosen by convenience in con-
sideration of overall geometry. Considering the simple cantilever truss shown in
Figure 3.1a, it is logical to select the global XY axes as parallel to the predomi-
nant geometric “axes” of the truss as shown. If we examine the circled joint, for
example, redrawn in Figure 3.1b, we observe that five element nodes are physi-
cally connected at one global node and the element x axes do not coincide with
the global X axis. The physical connection and varying geometric orientation
of the elements lead to the following premises inherent to the finite element
method:

1. The element nodal displacement of each connected element must be the
same as the displacement of the connection node in the global coordinate
system; the mathematical formulation, as will be seen, enforces this
requirement (displacement compatibility).
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(a)

3

X

Y

1 5

4 8 106
2

9

7

(b)

3 7

4
62

Figure 3.1
(a) Two-dimensional truss composed of ten elements. (b) Truss joint connecting five
elements.

2. The physical characteristics (in this case, the stiffness matrix and element
force) of each element must be transformed, mathematically, to the global
coordinate system to represent the structural properties in the global system
in a consistent mathematical frame of reference.

3. The individual element parameters of concern (for the bar element, axial
stress) are determined after solution of the problem in the global coordinate
system by transformation of results back to the element reference frame
(postprocessing).

Why are we basing the formulation on displacements? Generally, a design
engineer is more interested in the stress to which each truss member is subjected,
to compare the stress value to a known material property, such as the yield
strength of the material. Comparison of computed stress values to material prop-
erties may lead to changes in material or geometric properties of individual ele-
ments (in the case of the bar element, the cross-sectional area). The answer to the
question lies in the nature of physical problems. It is much easier to predict the
loading (forces and moments) to which a structure is subjected than the deflec-
tions of such a structure. If the external loads are specified, the relations between
loads and displacements are formulated in terms of the stiffness matrix and we
solve for displacements. Back-substitution of displacements into individual ele-
ment equations then gives us the strains and stresses in each element as desired.
This is the stiffness method and is used exclusively in this text. In the alternate
procedure, known as the flexibility method [1], displacements are taken as the
known quantities and the problem is formulated such that the forces (more gen-
erally, the stress components) are the unknown variables. Similar discussion ap-
plies to nonstructural problems. In a heat transfer situation, the engineer is most
often interested in the rate of heat flow into, or out of, a particular device. While
temperature is certainly of concern, temperature is not the primary variable of
interest. Nevertheless, heat transfer problems are generally formulated such that
temperature is the primary dependent variable and heat flow is a secondary,
computed variable in analogy with strain and stress in structural problems.

Returning to consideration of Figure 3.1b, where multiple elements are con-
nected at a global node, the geometry of the connection determines the relations
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between element displacements and global displacements as well as the contribu-
tions of individual elements to overall structural stiffness. In the direct stiffness
method, the stiffness matrix of each element is transformed from the element
coordinate system to the global coordinate system. The individual terms of each
transformed element stiffness matrix are then added directly to the global stiffness
matrix as determined by element connectivity (as noted, the connectivity relations
ensure compatibility of displacements at joints and nodes where elements are
connected). For example and simply by intuition at this point, elements 3 and 7 in
Figure 3.1b should contribute stiffness only in the global X direction; elements 2
and 6 should contribute stiffness in both X and Y global directions; element 4
should contribute stiffness only in the global Y direction. The element transfor-
mation and stiffness matrix assembly procedures to be developed in this chapter
indeed verify the intuitive arguments just made.

The direct stiffness assembly procedure, subsequently described, results in
exactly the same system of equations as would be obtained by a formal equilib-
rium approach. By a formal equilibrium approach, we mean that the equilibrium
equations for each joint (node) in the structure are explicitly expressed, including
deformation effects. This should not be confused with the method of joints [2],
which results in computation of forces only and does not take displacement into
account. Certainly, if the force in each member is known, the physical properties
of the member can be used to compute displacement. However, enforcing com-
patibility of displacements at connections (global nodes) is algebraically tedious.
Hence, we have another argument for the stiffness method: Displacement com-
patibility is assured via the formulation procedure. Granted that we have to
“backtrack” to obtain the information of true interest (strain, stress), but the back-
tracking is algebraic and straightforward, as will be illustrated.

3.2 NODAL EQUILIBRIUM EQUATIONS
To illustrate the required conversion of element properties to a global coordinate
system, we consider the one-dimensional bar element as a structural member of a
two-dimensional truss. Via this relatively simple example, the assembly procedure
of essentially any finite element problem formulation is illustrated. We choose
the element type (in this case we have only one selection, the bar element); spec-
ify the geometry of the problem (element connectivity); formulate the algebraic
equations governing the problem (in this case, static equilibrium); specify the
boundary conditions (known displacements and applied external forces); solve
the system of equations for the global displacements; and back-substitute dis-
placement values to obtain secondary variables, including strain, stress, and reac-
tion forces at constrained locations (boundary conditions). The reader is advised
to note that we use the term secondary variable only in the mathematical sense;
strain and stress are secondary only in the sense that the values are computed after
the general solution for displacements. The strain and stress values are of primary
importance in design.
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(a)

F3Y

�2

�1

Y

X

F3X

1

2

1

2
3

Figure 3.2
(a) A two-element truss with node and element numbers. (b) Global displacement notation.

(b)

U6

U5

1

U6

U5
U4

U3

U2

U1

2

Conversion of element equations from element coordinates to global coordi-
nates and assembly of the global equilibrium equations are described first in the
two-dimensional case with reference to Figure 3.2a. The figure depicts a simple
two-dimensional truss composed of two structural members joined by pin con-
nections and subjected to applied external forces. The pin connections are taken
as the nodes of two bar elements as shown; node and element numbers, as well
as the selected global coordinate system are also shown. The corresponding
global displacements are shown in Figure 3.2b. The convention used here for
global displacements is that U2i−1 is displacement in the global X direction of
node i and U2i is displacement of node i in the global Y direction. The convention
is by no means restrictive; the convention is selected such that displacements in
the direction of the global X axis are odd numbered and displacements in the
direction of the global Y axis are even numbered. (In using FEM software, the
reader will find that displacements are denoted in various fashions, UX, UY, UZ,
etc.) Orientation angle � for each element is measured as positive from the global
X axis to the element x axis, as shown. Node numbers are circled while element
numbers are in boxes. Element numbers are superscripted in the notation.

To obtain the equilibrium conditions, free-body diagrams of the three con-
necting nodes and the two elements are drawn in Figure 3.3. Note that the exter-
nal forces are numbered via the same convention as the global displacements.
For node 1, (Figure 3.3a), we have the following equilibrium equations in the
global X and Y directions, respectively:

F1 − f (1)
1 cos �1 = 0 (3.1a)

F2 − f (1)
1 sin �1 = 0 (3.1b)
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(a)

F2

f 1
(1)

F1
�1

(b)

f 2
(2)

F4

F3

�2

(c)

f 3
(1)

f 3
(2)

F5

F6

Figure 3.3
(a)–(c) Nodal free-body diagrams. (d) and (e) Element free-body diagrams.

(d)

�1

f 3
(1)

f 1
(1)

(e)

�2

f 2
(2)

f 3
(2)

and for node 2,

F3 − f (2)
2 cos �2 = 0 (3.2a)

F4 − f (2)
2 sin �2 = 0 (3.2b)

while for node 3,

F5 − f (1)
3 cos �1 − f (2)

3 cos �2 = 0 (3.3a)

F6 − f (1)
3 sin �1 − f (2)

3 sin �2 = 0 (3.3b)

Equations 3.1–3.3 simply represent the conditions of static equilibrium from a
rigid body mechanics standpoint. Assuming external loads F5 and F6 are known,
these six nodal equilibrium equations formally contain eight unknowns (forces).
Since the example truss is statically determinate, we can invoke the additional
equilibrium conditions applicable to the truss as a whole as well as those for the
individual elements (Figures 3.3d and 3.3e) and eventually solve for all of the
forces. However, a more systematic procedure is obtained if the formulation is
transformed so that the unknowns are nodal displacements. Once the transfor-
mation is accomplished, we find that the number of unknowns is exactly the
same as the number of nodal equilibrium equations. In addition, static indeter-
minacy is automatically accommodated. As the reader may recall from study of
mechanics of materials, the solution of statically indeterminate systems requires
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specification of one or more displacement relations; hence, the displacement for-
mulation of the finite element method includes such situations.

To illustrate the transformation to displacements, Figure 3.4a depicts a bar
element connected at nodes i and j in a general position in a two-dimensional
(2-D) truss structure. As a result of external loading on the truss, we assume that
nodes i and j undergo 2-D displacement, as shown in Figure 3.4b. Since the ele-
ment must remain connected at the structural joints, the connected element nodes
must undergo the same 2-D displacements. This means that the element is sub-
jected not only to axial motion but rotation as well. To account for the rotation,
we added displacements v1 and v2 at element nodes 1 and 2, respectively, in the
direction perpendicular to the element x axis. Owing to the assumption of smooth
pin joint connections, the perpendicular displacements are not associated with
element stiffness; nevertheless, these displacements must exist so that the ele-
ment remains connected to the structural joint so that the element displacements
are compatible with (i.e., the same as) joint displacements. Although the element
undergoes a rotation in general, for computation purposes, orientation angle � is
assumed to be the same as in the undeformed structure. This is a result of the
assumption of small, elastic deformations and is used throughout the text.

To now relate element nodal displacements referred to the element coordi-
nates to element displacements in global coordinates, Figure 3.4c shows element
nodal displacements in the global system using the notation

U (e)
1 = element node 1 displacement in the global X direction

U (e)
2 = element node 1 displacement in the global Y direction

U (e)
3 = element node 2 displacement in the global X direction

U (e)
4 = element node 2 displacement in the global Y direction

(a)

j

i

�

u2
(e)

u1
(e)

Figure 3.4
(a) Bar element at orientation �. (b) General displacements of a bar element. (c) Bar element
global displacements.

(b)

j

i

After loading

Original

u2
(e) v2

(e)

u1
(e)

v1
(e)

(c)

j

i

�

U 4
(e)

U 3
(e)

U 1
(e)

U 2
(e)
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Again, note the use of capital letters for global quantities and the superscript
notation to refer to an individual element. As the nodal displacements must be
the same in both coordinate systems, we can equate vector components of global
displacements to element system displacements to obtain the relations

u (e)
1 = U (e)

1 cos � + U (e)
2 sin �

v(e)
1 = −U (e)

1 sin � + U (e)
2 cos �

(3.4a)

u (e)
2 = U (e)

3 cos � + U (e)
4 sin �

v(e)
1 = −U (e)

3 sin � + U (e)
4 cos �

(3.4b)

As noted, the v displacement components are not associated with element stiff-
ness, hence not associated with element forces, so we can express the axial de-
formation of the element as

�(e) = u (e)
2 − u (e)

1 = (
U (e)

3 − U (e)
1

)
cos � + (

U (e)
4 − U (e)

2

)
sin � (3.5)

The net axial force acting on the element is then

f (e) = k (e)�(e) = k (e)
{(

U (e)
3 − U (e)

1

)
cos � + (

U (e)
4 − U (e)

2

)
sin �

}
(3.6)

Utilizing Equation 3.6 for element 1 (Figure 3.3d) while noting that the dis-
placements of element 1 are related to the specified global displacements as
U (1)

1 = U1, U (1)
2 = U2, U (1)

3 = U5, U (1)
4 = U6, we have the force in element 1 as

f (1)
3 = − f (1)

1 = k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1] (3.7)

and similarly for element 2 (Figure 3.3e):

f (2)
3 = − f (2)

2 = k (2) [(U5 − U3)cos �2 + (U6 − U4)sin �2] (3.8)

Note that, in writing Equations 3.7 and 3.8, we invoke the condition that the dis-
placements of node 3 (U5 and U6) are the same for each element. To reiterate, this
assumption is actually a requirement, since on a physical basis, the structure
must remain connected at the joints after deformation. Displacement compatibil-
ity at the nodes is a fundamental requirement of the finite element method.

Substituting Equations 3.7 and 3.8 into the nodal equilibrium conditions
(Equations 3.1–3.3) yields

−k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]cos �1 = F1 (3.9)

−k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]sin �1 = F2 (3.10)

−k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]cos �2 = F3 (3.11)

−k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]sin �2 = F4 (3.12)

k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2] cos �2

+ k (1)[(U5 − U3)cos �1 + (U6 − U4)sin �1]cos �1 = F5 (3.13)

k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]sin �2

+ k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]sin �1 = F6 (3.14)
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Equations 3.9 through 3.14 are equivalent to the matrix form


k(1)c2�1 k(1)s�1c�1 0 0 −k(1)c2�1 −k(1)s�1c�1

k(1)s�1c�1 k(1)s2�1 0 0 −k(1)s�1c�1 −k(1)s2�1

0 0 k(2)c2�2 k(2)s�2c�2 −k(2)c2�2 −k(2)s�2c�2

0 0 k(2)s�2c�2 k(2)s2�2 −k(2)s�2c�2 −k(2)s2�2

−k(1)c2�12 −k1s�1c�1 −k(2)c2�2 −k(2)s�2c�2
k(1)c2�1+

k(2)c2�2

k(1)s�1c�1+
k(2)s�2c�2

−k1s�1c�1 −k(1)s2�1 −k(2)s�2c�2 −k(2)s2�2
k(1)s�1c�1+

k(2)s�2c�2

k(1)s2�1+
k(2)s2�2







U1

U2

U3

U4

U5

U6




=




F1

F2

F3

F4

F5

F6




(3.15)

The six algebraic equations represented by matrix Equation 3.15 express the
complete set of equilibrium conditions for the two-element truss. Equation 3.15
is of the form

[K ]{U } = {F } (3.16)

where [K ] is the global stiffness matrix, {U } is the vector of nodal displace-
ments, and {F } is the vector of applied nodal forces. We observe that the global
stiffness matrix is a 6 × 6 symmetric matrix corresponding to six possible global
displacements. Application of boundary conditions and solution of the equations
are deferred at this time, pending further discussion.

3.3 ELEMENT TRANSFORMATION
Formulation of global finite element equations by direct application of equilib-
rium conditions, as in the previous section, proves to be quite cumbersome ex-
cept for the very simplest of models. By writing the nodal equilibrium equations
in the global coordinate system and introducing the displacement formulation,
the procedure of the previous section implicitly transformed the individual ele-
ment characteristics (the stiffness matrix) to the global system. A direct method
for transforming the stiffness characteristics on an element-by-element basis
is now developed in preparation for use in the direct assembly procedure of the
following section.

Recalling the bar element equations expressed in the element frame as

AE

L

[
1 −1

−1 1

]{
u (e)

1

u (e)
2

}
=

[
ke −ke

−ke ke

]{
u (e)

1

u (e)
2

}
=

{
f (e)

1

f (e)
2

}
(3.17)

the present objective is to transform these equilibrium equations into the global
coordinate system in the form

[
K (e)]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




=




F (e)
1

F (e)
2

F (e)
3

F (e)
4




(3.18)
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In Equation 3.18, [K (e)] represents the element stiffness matrix in the global co-
ordinate system, the vector {F (e)} on the right-hand side contains the element
nodal force components in the global frame, displacements U (e)

1 and U (e)
3 are

parallel to the global X axis, while U (e)
2 and U (e)

4 are parallel to the global Y axis.
The relation between the element axial displacements in the element coordinate
system and the element displacements in global coordinates (Equation 3.4) is

u (e)
1 = U (e)

1 cos � + U (e)
2 sin � (3.19)

u (e)
2 = U (e)

3 cos � + U (e)
4 sin � (3.20)

which can be written in matrix form as

{
u(e)

1

u(e)
2

}
=

[
cos � sin � 0 0

0 0 cos � sin �

]



U (e)
1

U (e)
2

U (e)
3

U (e)
4




= [R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




(3.21)

where

[R] =
[

cos � sin � 0 0
0 0 cos � sin �

]
(3.22)

is the transformation matrix of element axial displacements to global displace-
ments. (Again note that the element nodal displacements in the direction perpen-
dicular to the element axis, v1 and v2, are not considered in the stiffness matrix
development; these displacements come into play in dynamic analyses in
Chapter 10.) Substituting Equation 3.22 into Equation 3.17 yields

[
ke −ke

−ke ke

][
cos � sin � 0 0

0 0 cos � sin �

]



U (e)
1

U (e)
2

U (e)
3

U (e)
4




=
{

f (e)
1

f (e)
2

}
(3.23)

or

[
ke −ke

−ke ke

]
[R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




=
{

f (e)
1

f (e)
2

}
(3.24)

While we have transformed the equilibrium equations from element displace-
ments to global displacements as the unknowns, the equations are still expressed
in the element coordinate system. The first of Equation 3.23 is the equilibrium
condition for element node 1 in the element coordinate system. If we multiply
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this equation by cos �, we obtain the equilibrium equation for the node in the
X direction of the global coordinate system. Similarly, multiplying by sin � , the
Y direction global equilibrium equation is obtained. Exactly the same procedure
with the second equation expresses equilibrium of element node 2 in the global
coordinate system. The same desired operations described are obtained if we
premultiply both sides of Equation 3.24 by [R]T , the transpose of the transfor-
mation matrix; that is,

[R]T

[
ke −ke

−ke ke

]
[R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




=




cos � 0
sin � 0

0 cos �
0 sin �




{
f (e)

1

f (e)
2

}
=




f (e)
1 cos �

f (e)
1 sin �

f (e)
2 cos �

f (e)
2 sin �




(3.25)

Clearly, the right-hand side of Equation 3.25 represents the components of the
element forces in the global coordinate system, so we now have

[R]T

[
ke −ke

−ke ke

]
[R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




=




F (e)
1

F (e)
2

F (e)
3

F (e)
4




(3.26)

Matrix Equation 3.26 represents the equilibrium equations for element nodes 1
and 2, expressed in the global coordinate system. Comparing this result with
Equation 3.18, the element stiffness matrix in the global coordinate frame is seen
to be given by

[
K (e)

] = [R]T

[
ke −ke

−ke ke

]
[R] (3.27)

Introducing the notation c = cos � , s = sin � and performing the matrix multi-
plications on the right-hand side of Equation 3.27 results in

[
K (e)] = ke




c2 sc −c2 −sc

sc s2 −sc −s2

−c2 −sc c2 sc

−sc −s2 sc s2


 (3.28)

where ke = AE/L is the characteristic axial stiffness of the element. 
Examination of Equation 3.28 shows that the symmetry of the element stiff-

ness matrix is preserved in the transformation to global coordinates. In addition,
although not obvious by inspection, it can be shown that the determinant is zero,
indicating that, after transformation, the stiffness matrix remains singular. This is
to be expected, since as previously discussed, rigid body motion of the element
is possible in the absence of specified constraints.



Hutton: Fundamentals of 
Finite Element Analysis

3. Truss Structures: The 
Direct Stiffness Method

Text © The McGraw−Hill 
Companies, 2004

3.4 Direct Assembly of Global Stiffness Matrix 61

3.3.1 Direction Cosines

In practice, a finite element model is constructed by defining nodes at specified
coordinate locations followed by definition of elements by specification of the
nodes connected by each element. For the case at hand, nodes i and j are defined
in global coordinates by (Xi, Yi) and (Xj, Yj). Using the nodal coordinates, element
length is readily computed as

L = [( X j − Xi )
2 + (Yj − Yi )

2]1/2 (3.29)

and the unit vector directed from node i to node j is

� = 1

L
[( X j − Xi )I + (Yj − Yi )J] = cos �X I + cos �Y J (3.30)

where I and J are unit vectors in global coordinate directions X and Y, respec-
tively. Recalling the definition of the scalar product of two vectors and referring
again to Figure 3.4, the trigonometric values required to construct the element
transformation matrix are also readily determined from the nodal coordinates as
the direction cosines in Equation 3.30

cos � = cos �X = � · I = X j − Xi

L
(3.31)

sin � = cos �Y = � · J = Yj − Yi

L
(3.32)

Thus, the element stiffness matrix of a bar element in global coordinates can
be completely determined by specification of the nodal coordinates, the cross-
sectional area of the element, and the modulus of elasticity of the element material.

3.4 DIRECT ASSEMBLY OF GLOBAL
STIFFNESS MATRIX

Having addressed the procedure of transforming the element characteristics of
the one-dimensional bar element into the global coordinate system of a two-
dimensional structure, we now address a method of obtaining the global equilib-
rium equations via an element-by-element assembly procedure. The technique of
directly assembling the global stiffness matrix for a finite element model of a
truss is discussed in terms of the simple two-element system depicted in Fig-
ure 3.2. Assuming the geometry and material properties to be completely speci-
fied, the element stiffness matrix in the global frame can be formulated for each
element using Equation 3.28 to obtain

[
K (1)] =




k(1)
11 k(1)

12 k(1)
13 k(1)

14

k(1)
21 k(1)

22 k(1)
23 k(1)

24

k(1)
31 k(1)

32 k(1)
33 k(1)

34

k(1)
41 k(1)

42 k(1)
43 k(1)

44


 (3.33)
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for element 1 and 

[
K (2)] =




k(2)
11 k(2)

12 k(2)
13 k(2)

14

k(2)
21 k(2)

22 k(2)
23 k(2)

24

k(2)
31 k(2)

32 k(2)
33 k(2)

34

k(2)
41 k(2)

42 k(2)
43 k(2)

44




(3.34)

for element 2. The stiffness matrices given by Equations 3.33 and 3.34 contain
32 terms, which together will form the 6 × 6 system matrix containing 36 terms.
To “assemble” the individual element stiffness matrices into the global stiffness
matrix, it is necessary to observe the correspondence of individual element dis-
placements to global displacements and allocate the associated element stiffness
terms to the correct location in the global matrix. For element 1 of Figure 3.2, the
element displacements correspond to global displacements per

{
U (1)} =




U (e)
1

U (e)
2

U (e)
3

U (e)
4




⇒




U1

U2

U5

U6




(3.35)

while for element 2

{
U (2)} =




U (e)
1

U (e)
2

U (e)
3

U (e)
4




⇒




U3

U4

U5

U6




(3.36)

Equations 3.35 and 3.36 are the connectivity relations for the truss and explicitly
indicate how each element is connected in the structure. For example, Equa-
tion 3.35 clearly shows that element 1 is not associated with global displacements
U3 and U4 (therefore, not connected to global node 2) and, hence, contributes no
stiffness terms affecting those displacements. This means that element 1 has no
effect on the third and fourth rows and columns of the global stiffness matrix.
Similarly, element 2 contributes nothing to the first and second rows and columns.

Rather that write individual displacement relations, it is convenient to place
all the element to global displacement data in a single table as shown in Table 3.1.

Table 3.1 Nodal Displacement Correspondence Table

Global Displacement Element 1 Displacement Element 2 Displacement

1 1 0
2 2 0
3 0 1
4 0 2
5 3 3
6 4 4
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The first column contains the entire set of global displacements in numerical
order. Each succeeding column represents an element and contains the number of
the element displacement corresponding to the global displacement in each row.
A zero entry indicates no connection, therefore no stiffness contribution. The
individual terms in the global stiffness matrix are then obtained by allocating the
element stiffness terms per the table as follows:

K11 = k (1)
11 + 0

K12 = k (1)
12 + 0

K13 = 0 + 0

K14 = 0 + 0

K15 = k (1)
13 + 0

K16 = k (1)
14 + 0

K22 = k (1)
22 + 0

K23 = 0 + 0

K24 = 0 + 0

K25 = k (1)
23 + 0

K26 = k (1)
24 + 0

K33 = 0 + k (2)
11

K34 = 0 + k (2)
12

K35 = 0 + k (2)
13

K36 = 0 + k (2)
14

K44 = 0 + k (2)
22

K45 = 0 + k (2)
23

K46 = 0 + k (2)
24

K55 = k (1)
33 + k (2)

33

K56 = k (1)
34 + k (2)

34

K66 = k (1)
44 + k (2)

44

where the known symmetry of the stiffness matrix has been implicitly used to
avoid repetition. It is readily shown that the resulting global stiffness matrix is
identical in every respect to that obtained in Section 3.2 via the equilibrium
equations. This is the direct stiffness method; the global stiffness matrix is
“assembled” by direct addition of the individual element stiffness terms per the
nodal displacement correspondence table that defines element connectivity.
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For the truss shown in Figure 3.2, �1 = �/4, �2 = 0, and the element properties are such
that k1 = A1 E1/L 1 , k2 = A2 E2/L 2 . Transform the element stiffness matrix of each ele-
ment into the global reference frame and assemble the global stiffness matrix.

■ Solution
For element 1, cos �1 = sin �1 =

√
2/2 and c2�1 = s2�1 = c�1s�1 = 1

2
, so substitution

into Equation 3.33 gives

[
K (1)

] = k1

2




1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1




For element 2, cos �2 = 1, sin �2 = 0 which gives the transformed stiffness matrix as

[
K (2)

] = k2




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0




Assembling the global stiffness matrix directly using Equations 3.35 and 3.36 gives

K11 = k1/2

K12 = k1/2

K13 = 0

K14 = 0

K15 = −k1/2

K16 = −k1/2

K22 = k1/2

K23 = 0

K24 = 0

K25 = −k1/2

K26 = −k1/2

K33 = k2

K34 = 0

K35 = −k2

K36 = 0

K44 = 0

K45 = 0

K46 = 0

EXAMPLE 3.1
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K55 = k1/2 + k2

K56 = k1/2

K66 = k1/2

The complete global stiffness matrix is then

[K ] =




k1/2 k1/2 0 0 −k1/2 −k1/2

k1/2 k1/2 0 0 −k1/2 −k1/2

0 0 k2 0 −k2 0

0 0 0 0 0 0

−k1/2 −k1/2 −k2 0 k1/2 + k2 k1/2

−k1/2 −k1/2 0 0 k1/2 k1/2




The previously described embodiment of the direct stiffness method is
straightforward but cumbersome and inefficient in practice. The main problem
inherent to the method lies in the fact that each term of the global stiffness ma-
trix is computed sequentially and accomplishment of this sequential construction
requires that each element be considered at each step. A technique that is much
more efficient and well-suited to digital computer operations is now described. In
the second method, the element stiffness matrix for each element is considered in
sequence, and the element stiffness terms added to the global stiffness matrix per
the nodal connectivity table. Thus, all terms of an individual element stiffness
matrix are added to the global matrix, after which that element need not be con-
sidered further. To illustrate, we rewrite Equations 3.33 and 3.34 as

1 2 5 6

[
K (1)] =




k(1)
11 k(1)

12 k(1)
13 k(1)

14

k(1)
21 k(1)

22 k(1)
23 k(1)

24

k(1)
31 k(1)

32 k(1)
33 k(1)

34

k(1)
41 k(1)

42 k(1)
43 k(1)

44




1

2

5

6

(3.37)

3 4 5 6

[
K (2)] =




k(2)
11 k(2)

12 k(2)
13 k(2)

14

k(2)
21 k(2)

22 k(2)
23 k(2)

24

k(2)
31 k(2)

32 k(2)
33 k(2)

34

k(2)
41 k(2)

42 k(2)
43 k(2)

44




3

4

5

6

(3.38)

In this depiction of the stiffness matrices for the two individual elements, the
numbers to the right of each row and above each column indicate the global
displacement associated with the corresponding row and column of the element
stiffness matrix. Thus, we combine the nodal displacement correspondence table
with the individual element stiffness matrices. For the element matrices, each
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individual component is now labeled as associated with a specific row-column
position of the global stiffness matrix and can be added directly to that location.
For example, Equation 3.38 shows that the k (2)

24 component of element 2 is to be
added to global stiffness component K46 (and via symmetry K64). Thus, we can
take each element in turn and add the individual components of the element stiff-
ness matrix to the proper locations in the global stiffness matrix.

The form of Equations 3.37 and 3.38 is convenient for illustrative purposes
only. For actual computations, inclusion of the global displacement numbers
within the element stiffness matrix is unwieldy. A streamlined technique suitable
for computer application is described next. For a 2-D truss modeled by spar
elements, the following conventions are adopted:

1. The global nodes at which each element is connected are denoted by i and j.
2. The origin of the element coordinate system is located at node i and the

element x axis has a positive sense in the direction from node i to node j.
3. The global displacements at element nodes are U2i−1, U2i, U2j−1, and U2j

as noted in Section 3.2.

Using these conventions, all the information required to define element con-
nectivity and assemble the global stiffness matrix is embodied in an element-
node connectivity table, which lists element numbers in sequence and shows the
global node numbers i and j to which each element is connected. For the two-
element truss of Figure 3.2, the required data are as shown in Table 3.2.

Using the nodal data of Table 3.2, we define, for each element, a 1 × 4 ele-
ment displacement location vector as[

L (e)
] = [2i − 1 2i 2 j − 1 2 j ] (3.39)

where each value is the global displacement number corresponding to element
stiffness matrix rows and columns 1, 2, 3, 4 respectively. For the truss of Fig-
ure 3.2, the element displacement location vectors are [

L (1)
] = [1 2 5 6] (3.40)[

L (2)
] = [3 4 5 6] (3.41)

Before proceeding, let us note the quantity of information that can be
obtained from simple-looking Table 3.2. With the geometry of the structure
defined, the (X, Y) global coordinates of each node are specified. Using these
data, the length of each element and the direction cosines of element orientation

Table 3.2 Element-Node Connectivity Table
for Figure 3.2

Node

Element i j

1 1 3
2 2 3
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are computed via Equations 3.29 and 3.30, respectively. Specification of the
cross-sectional area A and modulus of elasticity E of each element allows com-
putation of the element stiffness matrix in the global frame using Equation 3.28.
Finally, the element stiffness matrix terms are added to the global stiffness matrix
using the element displacement location vector.

In the context of the current example, the reader is to imagine a 6 × 6 array
of mailboxes representing the global stiffness matrix, each of which is originally
empty (i.e., the stiffness coefficient is zero). We then consider the stiffness ma-
trix of an individual element in the (2-D) global reference frame. Per the location
vector (addresses) for the element, the individual values of the element stiffness
matrix are placed in the appropriate mailbox. In this fashion, each element is
processed in sequence and its stiffness characteristics added to the global matrix.
After all elements are processed, the array of mailboxes contains the global stiff-
ness matrix.

3.5 BOUNDARY CONDITIONS,
CONSTRAINT FORCES

Having obtained the global stiffness matrix via either the equilibrium equations
or direct assembly, the system displacement equations for the example truss of
Figure 3.2 are of the form

[K ]




U1

U2

U3

U4

U5

U6




=




F1

F2

F3

F4

F5

F6




(3.42)

As noted, the global stiffness matrix is a singular matrix; therefore, a unique so-
lution to Equation 3.42 cannot be obtained directly. However, in developing
these equations, we have not yet taken into account the constraints imposed on
system displacements by the support conditions that must exist to preclude rigid
body motion. In this example, we observe the displacement boundary conditions

U1 = U2 = U3 = U4 = 0 (3.43)

leaving only U5 and U6 to be determined. Substituting the boundary condition
values and expanding Equation 3.42 we have, formally,

K15U5 + K16U6 = F1

K25U5 + K26U6 = F2

K35U5 + K36U6 = F3

K45U5 + K46U6 = F4

K55U5 + K56U6 = F5

K56U5 + K66U6 = F6

(3.44)
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as the reduced system equations (this is the partitioned set of matrix equations,
written explicitly for the active displacements). In this example, F1, F2, F3, and
F4 are the components of the reaction forces at constrained nodes 1 and 2, while
F5 and F6 are global components of applied external force at node 3. Given the
external force components, the last two of Equations 3.44 can be explicitly solved
for displacements U5 and U6. The values obtained for these two displacements
are then substituted into the constraint equations (the first four of Equations 3.44)
and the reaction force components computed.

A more general approach to application of boundary conditions and compu-
tation of reactions is as follows. Letting the subscript c denote constrained
displacements and subscript a denote unconstrained (active) displacements, the
system equations can be partitioned (Appendix A) to obtain

[
Kcc Kca

Kac Kaa

]{
Uc

Ua

}
=

{
Fc

Fa

}
(3.45)

where the values of the constrained displacements Uc are known (but not neces-
sarily zero), as are the applied external forces Fa. Thus, the unknown, active
displacements are obtained via the lower partition as

[Kac]{Uc} + [Kaa]{Ua} = {Fa} (3.46a)

{Ua} = [Kaa]−1({Fa} − [Kac]{Uc}) (3.46b)

where we have assumed that the specified displacements {Uc} are not necessar-
ily zero, although that is usually the case in a truss structure. (Again, note that, for
numerical efficiency, methods other than matrix inversion are applied to obtain
the solutions formally represented by Equations 3.46.) Given the displacement
solution of Equations 3.46, the reactions are obtained using the upper partition of
matrix Equation 3.45 as

{Fc} = [Kcc]{Uc} + [Kca]{Ua} (3.47)

where [Kca] = [Kac]T by the symmetry property of the stiffness matrix.

3.6 ELEMENT STRAIN AND STRESS
The final computational step in finite element analysis of a truss structure is to
utilize the global displacements obtained in the solution step to determine the
strain and stress in each element of the truss. For an element connecting nodes i
and j, the element nodal displacements in the element coordinate system are
given by Equations 3.19 and 3.20 as

u (e)
1 = U (e)

1 cos � + U (e)
2 sin �

u (e)
2 = U (e)

3 cos � + U (e)
4 sin �

(3.48)
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and the element axial strain (utilizing Equation 2.29 and the discretization and
interpolation functions of Equation 2.25) is then

ε(e) = du (e)(x )

dx
= d(e)

dx
[N1(x ) N2(x )]

{
u (e)

1

u (e)
2

}

=
[ −1

L (e)

1

L (e)

] {
u (e)

1

u (e)
2

}
= u (e)

2 − u (e)
1

L (e)
(3.49)

where L (e) is element length. The element axial stress is then obtained via appli-
cation of Hooke’s law as

� (e) = Eε(e) (3.50)

Note, however, that the global solution does not give the element axial displace-
ment directly. Rather, the element displacements are obtained from the global
displacements via Equations 3.48. Recalling Equations 3.21 and 3.22, the ele-
ment strain in terms of global system displacements is

ε(e) = du(e)(x)

dx
= d

dx
[N1(x) N2(x)][R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




(3.51)

where [R] is the element transformation matrix defined by Equation 3.22. The
element stresses for the bar element in terms of global displacements are those
given by

�(e) = Eε(e) = E
du(e)(x)

dx
= E

d(e)

dx
[N1(x) N2(x)][R]




U (e)
1

U (e)
2

U (e)
3

U (e)
4




(3.52)

As the bar element is formulated here, a positive axial stress value indicates that
the element is in tension and a negative value indicates compression per the usual
convention. Note that the stress calculation indicated in Equation 3.52 must be
performed on an element-by-element basis. If desired, the element forces can be
obtained via Equation 3.23.

The two-element truss in Figure 3.5 is subjected to external loading as shown. Using the
same node and element numbering as in Figure 3.2, determine the displacement com-
ponents of node 3, the reaction force components at nodes 1 and 2, and the element
displacements, stresses, and forces. The elements have modulus of elasticity E1 = E2 =
10 × 106 lb/in.2 and cross-sectional areas A1 = A2 = 1.5 in.2.

EXAMPLE 3.2
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2

1

2

1

3

(0, 40)

(0, 0)

(40, 40)

500 lb

300 lb

Figure 3.5 Two-element truss with
external loading.

■ Solution
The nodal coordinates are such that �1 = �/4 and �2 = 0 and the element lengths are
L 1 = √

402 + 402 ≈ 56.57 in., L2 = 40 in. The characteristic element stiffnesses are then

k1 = A1 E1

L 1
= 1.5(10)(106)

56.57
= 2.65(105) lb/in.

k2 = A2 E2

L 2
= 1.5(10)(106)

40
= 3.75(105) lb/in.

As the element orientation angles and numbering scheme are the same as in Example 3.1,
we use the result of that example to write the global stiffness matrix as

[K ] =




1.325 1.325 0 0 −1.325 −1.325
1.325 1.325 0 0 −1.325 −1.325

0 0 3.75 0 −3.75 0
0 0 0 0 0 0

−1.325 −1.325 −3.75 0 5.075 1.325
−1.325 −1.325 0 0 1.325 1.325




105 lb/in.

Incorporating the displacement constraints U1 = U2 = U3 = U4 = 0 , the global equilib-
rium equations are

105




1.325 1.325 0 0 −1.325 −1.325
1.325 1.325 0 0 −1.325 −1.325

0 0 3.75 0 −3.75 0
0 0 0 0 0 0

−1.325 −1.325 −3.75 0 5.075 1.325
−1.325 −1.325 0 0 1.325 1.325


��������������������

�
�
�
�
�
�
�




0
0
0
0

U5

U6


�

=




F1

F2

F3

F4

500
300


��
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and the dashed lines indicate the partitioning technique of Equation 3.45. Hence, the
active displacements are governed by

105

[
5.075 1.325
1.325 1.325

]{
U5

U6

}
=

{
500
300

}

Simultaneous solution gives the displacements as

U5 = 5.333 × 10−4 in. and U6 = 1.731 × 10−3 in.

As all the constrained displacement values are zero, the reaction forces are obtained via
Equation 3.47 as




F1

F2

F3

F4




= {Fc} = [Kca ]{Ua } = 105




−1.325 −1.325
−1.325 −1.325
−3.75 0

0 0




{
0.5333
1.731

}
10−3 =




−300
−300
−200

0




lb

and we note that the net force on the structure is zero, as required for equilibrium. A check
of moments about any of the three nodes also shows that moment equilibrium is satisfied.

For element 1, the element displacements in the element coordinate system are

{
u(1)

1

u(1)
2

}
= [

R(1)
]



U1

U2

U5

U6




=
√

2

2

[
1 1 0 0
0 0 1 1

]



0
0

0.5333
1.731




10−3 =
{

0
1.6

}
10−3 in.

Element stress is computed using Equation 3.52:

�(1) = E1

[
− 1

L1

1

L1

][
R(1)]




U1

U2

U5

U6




Using the element displacements just computed, we have

� (1) = 10(106)

[
− 1

56.57

1

56.57

]{
0

1.6

}
10−3 ≈ 283 lb/in. 2

and the positive results indicate tensile stress.
The element nodal forces via Equation 3.23 are{

f (1)
1

f (1)
2

}
=

[
k1 −k1

−k1 k1

]{
u (1)

1

u (1)
2

}
= 2.65(105)

[
1 −1

−1 1

]{
0

1.6

}
10−3

=
{ −424

424

}
lb

and the algebraic signs of the element nodal forces also indicate tension.
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For element 2, the same procedure in sequence gives

{
u(2)

1

u(2)
2

}
= [

R(2)
]



U1

U2

U5

U6




=
[

1 0 0 0
0 0 1 0

]



0
0

0.5333
1.731




10−3 =
{

0
0.5333

}
10−4 in.

�(2) = 10(106)

[
− 1

40

1

40

]{
0

0.5333

}
10−3 ≈ 133 lb/in.2

{
f (2)

1

f (2)
2

}
=

[
k2 −k2

−k2 k2

]{
u(2)

1

u(2)
2

}
= 3.75(105)

[
1 −1

−1 1

]{
0

0.5333

}
10−3 =

{−200
200

}
lb

also indicating tension.
The finite method is intended to be a general purpose procedure for analyzing prob-

lems for which the general solution is not known; however, it is informative in the exam-
ples of this chapter (since the bar element poses an exact formulation) to check the
solutions in terms of axial stress computed simply as F/A for an axially loaded member.
The reader is encouraged to compute the axial stress by the simple stress formula for each
example to verify that the solutions via the stiffness-based finite element method are
correct.

3.7 COMPREHENSIVE EXAMPLE
As a comprehensive example of two-dimensional truss analysis, the structure de-
picted in Figure 3.6a is analyzed to obtain displacements, reaction forces, strains,
and stresses. While we do not include all computational details, the example
illustrates the required steps, in sequence, for a finite element analysis.

(a)

6000 lb

40 in. 40 in.

40 in.

4000 lb

2000 lb

2000 lb

Figure 3.6
(a) For each element, A = 1.5 in.2, E = 10 × 106 psi. (b) Node, element, and global displacement notation.

(b)

U7

642

73

51

U6

U8

4

Y

2

U4

U3

U12

U11

U10

U9 X

8

6

53 U51

U2

U1
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Step 1. Specify the global coordinate system, assign node numbers, and
define element connectivity, as shown in Figure 3.6b.

Step 2. Compute individual element stiffness values:

k (1) = k (3) = k (4) = k (5) = k (7) = k (8) = 1.5(107)

40
= 3.75(105) lb/in.

k (2) = k (6) = 1.5(107)

40
√

2
= 2.65(105) lb/in.

Step 3. Transform element stiffness matrices into the global coordinate
system. Utilizing Equation 3.28 with

�1 = �3 = �5 = �7 = 0 �4 = �8 = �/2 �2 = �/4 �6 = 3�/4

we obtain

[
K (1)] = [

K (3)] = [
K (5)] = [

K (7)] = 3.75(105)




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0




[
K (4)] = [

K (8)] = 3.75(105)




0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1




[
K (2)] = 2.65(105)

2




1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1




[
K (6)] = 2.65(105)

2




1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1




Step 4a. Construct the element-to-global displacement correspondence table.
With reference to Figure 3.6c, the connectivity and displacement
relations are shown in Table 3.3.

Step 4b. Alternatively and more efficiently, form the element-node
connectivity table (Table 3.4), and the corresponding element global
displacement location vector for each element is

L (1) = [1 2 5 6]

L (2) = [1 2 7 8]

L (3) = [3 4 7 8]

L (4) = [5 6 7 8]
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Table 3.3 Connectivity and Displacement Relations

Global Elem. 1 Elem. 2 Elem. 3 Elem. 4 Elem. 5 Elem. 6 Elem. 7 Elem. 8

1 1 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 2 0 0 0 0 0
5 3 0 0 1 1 0 0 0
6 4 0 0 2 2 0 0 0
7 0 3 3 3 0 3 1 0
8 0 4 4 4 0 4 2 0
9 0 0 0 0 3 1 0 1

10 0 0 0 0 4 2 0 2
11 0 0 0 0 0 0 3 3
12 0 0 0 0 0 0 4 4

Table 3.4 Element-Node Connectivity

Node

Element i j

1 1 3
2 1 4
3 2 4
4 3 4
5 3 5
6 5 4
7 4 6
8 5 6

L (5) = [5 6 9 10]

L (6) = [9 10 7 8]

L (7) = [7 8 11 12]

L (8) = [9 10 11 12]

Step 5. Assemble the global stiffness matrix per either Step 4a or 4b. The
resulting components of the global stiffness matrix are 

K11 = k (1)
11 + k (2)

11 = (3.75 + 2.65/2)105

K12 = k (1)
12 + k (2)

12 = (0 + 2.65/2)105

K13 = K14 = 0

K15 = k (1)
13 = −3.75(105)

K16 = k (1)
14 = 0

K17 = k (2)
13 = −(2.65/2)105
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K18 = k (2)
14 = −(2.65/2)105

K19 = K1,10 = K1,11 = K1,12 = 0

K22 = k (1)
22 + k (2)

22 = 0 + (2.65/2)105

K23 = K24 = 0

K25 = k (1)
23 = 0

K26 = k (1)
24 = 0

K27 = k (2)
23 = −(2.65/2)105

K28 = k (2)
24 = −(2.65/2)105

K29 = K2,10 = K2,11 = K2,12 = 0

K33 = k (3)
11 = 3.75(105)

K34 = k (3)
12 = 0

K35 = K36 = 0

K37 = k (3)
13 = −3.75(105)

K38 = k (3)
14 = 0

K39 = K3,10 = K3,11 = K3,12 = 0

K44 = k (3)
22 = 0

K45 = K46 = 0

K47 = k (3)
23 = 0

K48 = k (3)
24 = 0

K49 = K4,10 = K4,11 = K4,12 = 0

K55 = k (1)
33 + k (4)

11 + k (5)
11 = (3.75 + 0 + 3.75)105

K56 = k (1)
34 + k (4)

12 + k (5)
12 = 0 + 0 + 0 = 0

K57 = k (4)
13 = 0

K58 = k (4)
14 = 0

K59 = k (5)
13 = −3.75(105)

K5,10 = k (5)
14 = 0

K5,11 = K5,12 = 0

K66 = k (2)
44 + k (4)

22 + k (5)
22 = (0 + 3.75 + 0)105

K67 = k (4)
23 = 0

K68 = k (4)
24 = −3.75(10)5
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K69 = k (5)
23 = 0

K6,10 = k (5)
24 = 0

K6,11 = K6,12 = 0

K77 = k (2)
33 + k (3)

33 + k (4)
33 + k (6)

33 + k (7)
11

= (2.65/2 + 3.75 + 0 + 2.65/2 + 3.75)105

K78 = k (2)
34 + k (3)

34 + k (4)
34 + k (6)

34 + k (7)
12

= (2.65/2 + 0 + 0 − 2.65/2 + 0)105 = 0

K79 = k (6)
13 = −(2.65/2)105

K7,10 = k (6)
23 = (2.65/2)105

K7,11 = k (7)
13 = −3.75(105)

K7,12 = k (7)
14 = 0

K88 = k (2)
44 + k (3)

44 + k (4)
44 + k (6)

44 + k (7)
22

= (2.65/2 + 0 + 3.75 + 2.65/2 + 0)105

K89 = k (6)
14 = (2.65/2)105

K8,10 = k (6)
24 = −(2.65/2)105

K8,11 = k (7)
23 = 0

K8,12 = k (7)
24 = 0

K99 = k (5)
33 + k (6)

11 + k (8)
11 = (3.75 + 2.65/2 + 0)105

K9,10 = k (5)
34 + k (6)

12 + k (8)
12 = (0 − 2.65/2 + 0)105

K9,11 = k (8)
13 = 0

K9,12 = k (8)
14 = 0

K10,10 = k (5)
44 + k (6)

22 + k (8)
22 = (0 + 2.65/2 + 3.75)105

K10,11 = k (8)
23 = 0

K10,12 = k (8)
24 = −3.75(105)

K11,11 = k (7)
33 + k (8)

33 = (3.75 + 0)105

K11,12 = k (7)
34 + k (8)

34 = 0 + 0

K12,12 = k (7)
44 + k (8)

44 = (0 + 3.75)105

Step 6. Apply the constraints as dictated by the boundary conditions. In this
example, nodes 1 and 2 are fixed so the displacement constraints are

U1 = U2 = U3 = U4 = 0
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Therefore, the first four equations in the 12 × 12 matrix system

[K ] {U } = {F }
are constraint equations and can be removed from consideration since
the applied displacements are all zero (if not zero, the constraints are
considered as in Equation 3.46, in which case the nonzero constraints
impose additional forces on the unconstrained displacements). The
constraint forces cannot be obtained until the unconstrained
displacements are computed. So, we effectively strike out the
first four rows and columns of the global equations to obtain 

[Kaa]




U5

U6

U7

U8

U9

U10

U11

U12




=




0
−2000

0
0

2000
0

4000
6000




as the system of equations governing the “active” displacements.
Step 7. Solve the equations corresponding to the unconstrained

displacements. For the current example, the equations are solved
using a spreadsheet program, inverting the (relatively small) global
stiffness matrix to obtain



U5

U6

U7

U8

U9

U10

U11

U12




=




0.02133
0.04085

−0.01600
0.04619
0.04267
0.15014

−0.00533
0.16614




in.

Step 8. Back-substitute the displacement data into the constraint equations
to compute reaction forces. Utilizing Equation 3.37, with {Uc} = {0},
we use the four equations previously ignored to compute the force
components at nodes 1 and 2. The constraint equations are of the form

Ki5U5 + Ki6U6 + · · · + Ki,12U12 = Fi i = 1, 4

and, on substitution of the computed displacements, yield



F1

F2

F3

F4


 =




−12,000
−4,000
6,000

0


 lb
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The reader is urged to utilize these reaction force components and
check the equilibrium conditions of the structure.

Step 9. Compute strain and stress in each element. The major computational
task completed in Step 7 provides the displacement components of
each node in the global coordinate system. With this information and
the known constrained displacements, the displacements of each
element in its element coordinate system can be obtained; hence, the
strain and stress in each element can be computed.

For element 2, for example, we have

u (2)
1 = U1 cos �2 + U2 sin �2 = 0

u (2)
2 = U7 cos �2 + U8 sin �2 = (−0.01600 + 0.04618)

√
2/2

= 0.02134

The axial strain in element 2 is then

ε(2) = u (2)
2 − u (2)

1

L (2)
= 0.02133

40
√

2
= 3.771(10−4)

and corresponding axial stress is

� (2) = Eε(2) = 3771 psi

The results for element 2 are presented as an example only. In finite
element software, the results for each element are available and
can be examined as desired by the user of the software
(postprocessing).

Results for each of the eight elements are shown in Table 3.5; and
per the usual sign convention, positive values indicate tensile stress
while negative values correspond to compressive stress. In obtaining
the computed results for this example, we used a spreadsheet program
to invert the stiffness matrix, MATLAB to solve via matrix inversion,
and a popular finite element software package. The solutions resulting
from each procedure are identical.

Table 3.5 Results for the Eight Elements

Element Strain Stress, psi

1 5.33(10−4) 5333
2 3.77(10−4) 3771
3 −4.0(10−4) −4000
4 1.33(10−4) 1333
5 5.33(10−4) 5333
6 −5.67(10−4) −5657
7 2.67(10−4) 2667
8 4.00(10−4) 4000
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3.8 THREE-DIMENSIONAL TRUSSES
Three-dimensional (3-D) trusses can also be modeled using the bar element,
provided the connections between elements are such that only axial load is trans-
mitted. Strictly, this requires that all connections be ball-and-socket joints. Even
when the connection restriction is not precisely satisfied, analysis of a 3-D truss
using bar elements is often of value in obtaining preliminary estimates of mem-
ber stresses, which in context of design, is valuable in determining required
structural properties. Referring to Figure 3.7 which depicts a one-dimensional
bar element connected to nodes i and j in a 3-D global reference frame, the unit
vector along the element axis (i.e., the element reference frame) expressed in the
global system is

�(e) = 1

L
[( X j − Xi )I + (Yj − Yi )J + ( Z j − Zi )K] (3.53)

or

�(e) = cos �x I + cos �yJ + cos �zK (3.54)

Thus, the element displacements are expressed in components in the 3-D global
system as

u (e)
1 = U (e)

1 cos �x + U (e)
2 cos �y + U (e)

3 cos �z (3.55)

u (e)
2 = U (e)

4 cos �x + U (e)
5 cos �y + U (e)

6 cos �z (3.56)

Here, we use the notation that element displacements 1 and 4 are in the global X
direction, displacements 2 and 5 are in the global Y direction, and element
displacements 3 and 6 are in the global Z direction.

U3j�1

U3i�1

Y

X

Z

�(e)

U3j�2

U3i�2

U3j

U3i

j

i

�Y

�X

�Z

Figure 3.7 Bar element in a 3-D global coordinate
system.
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Analogous to Equation 3.21, Equations 3.55 and 3.56 can be expressed as

{
u(e)

1

u(e)
2

}
=

[
cos �x cos �y cos �z 0 0 0

0 0 0 cos �x cos �y cos �z

]




U (e)
1

U (e)
2

U (e)
3

U (e)
4

U (e)
5

U (e)
6




= [R]
{
U (e)} (3.57)

where [R] is the transformation matrix mapping the one-dimensional element
displacements into a three-dimensional global coordinate system. Following the
identical procedure used for the 2-D case in Section 3.3, the element stiffness
matrix in the element coordinate system is transformed into the 3-D global co-
ordinates via

[
K (e)

] = [R]T

[
ke −ke

−ke ke

]
[R] (3.58)

Substituting for the transformation matrix [R] and performing the multiplication
results in

[
K (e)] = ke




c2
x cx cy cx cz −c2

x −cx cy −cx cz

cx cy c2
y cycz −cx cx −c2

y −cycz

cx cz cycz c2
z −cx cz −cycz −c2

z

−c2
x −cx cx −cx cz c2

x cx cy cx cz

−cx cy −c2
y −cycz cx cy c2

y cycz

−cx cz −cycz −c2
z cx cz cycz c2

z




(3.59)

as the 3-D global stiffness matrix for the one-dimensional bar element where 

cx = cos �x

cy = cos �y

cz = cos �z

(3.60)

Assembly of the global stiffness matrix (hence, the equilibrium equations),
is identical to the procedure discussed for the two-dimensional case with the ob-
vious exception that three displacements are to be accounted for at each node.

The three-member truss shown in Figure 3.8a is connected by ball-and-socket joints and
fixed at nodes 1, 2, and 3. A 5000-lb force is applied at node 4 in the negative Y direction,
as shown. Each of the three members is identical and exhibits a characteristic axial stiff-
ness of 3(105) lb/in. Compute the displacement components of node 4 using a finite
element model with bar elements.

EXAMPLE 3.3
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■ Solution
First, note that the 3-D truss with four nodes has 12 possible displacements. However,
since nodes 1–3 are fixed, nine of the possible displacements are known to be zero. There-
fore, we need assemble only a portion of the system stiffness matrix to solve for the three
unknown displacements. Utilizing the numbering scheme shown in Figure 3.8b and the
element-to-global displacement correspondence table (Table 3.6), we need consider only
the equations


 K10,10 K10,11 K10,12

K11,10 K11,11 K11,12

K12,10 K12,11 K12,12







U10

U11

U12


 =




0
−5000

0




Prior to assembling the terms required in the system stiffness matrix, the individual
element stiffness matrices must be transformed to the global coordinates as follows.

Element 1

�(1) = 1

50
[(40 − 0)I + (0 − 0)J + (0 − 30)K] = 0.8I − 0.6K

Hence, cx = 0.8, cy = 0, cz = −0.6, and Equation 3.59 gives

[
K (1)

] = 3(105)




0.64 0 −0.48 −0.64 0 0.48
0 0 0 0 0 0

−0.48 0 0.36 0.48 0 −0.36
−0.64 0 0.48 0.64 0 −0.48

0 0 0 0 0 0
0.48 −0 −0.36 −0.48 0 0.36




lb/ln.

(a)

(0, 0, �30)

(40, 0, 0)

Y

XZ

(0, 0, 30)

5000 lb
(0, �30, 0)

2

3

1

4

Figure 3.8
(a) A three-element, 3-D truss. (b) Numbering scheme.

2

3

1 4

U5

U4
U6

U11

U10
U12

U8

U7
U9

U2

U1
U3

1

2

3

(b)
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Element 2

�(2) = 1

50
[(40 − 0)I + (0 − 0)J + (0 − (−30))K] = 0.8I + 0.6K

[
K (2)

] = 3(105)




0.64 0 0.48 −0.64 0 −0.48
0 0 0 0 0 0

0.48 0 0.36 −0.48 0 −0.36
−0.64 0 −0.48 0.64 0 0.48

0 0 0 0 0 0
−0.48 0 −0.36 0.48 0 0.36




lb/in.

Element 3

�(3) = 1

50
[(40 − 0)I + (0 − (−30))J + (0 − 0)K] = 0.8I + 0.6J

[
K (3)

] = 3(105)




0.64 0.48 0 −0.64 −0.48 0
0.48 0.36 0 −0.48 −0.36 0

0 0 0 0 0 0
−0.64 −0.48 0 0.64 0.48 0
−0.48 −0.36 0 0.48 0.36 0

0 0 0 0 0 0




lb/in.

Referring to the last three rows of the displacement correspondence table, the required
terms of the global stiffness matrix are assembled as follows:

K10,10 = k(1)
44 + k(2)

44 + k(3)
44 = 3(105)(0.64 + 0.64 + 0.64) = 5.76(105) lb/in.

K10,11 = K11,10 = k(1)
45 + k(2)

45 + k(3)
45 = 3(105)(0 + 0 + 0.48) = 1.44(105) lb/in.

K10,12 = K12,10 = k(1)
46 + k(2)

46 + k(3)
46 = 3(105)(−0.48 + 0.48 + 0) = 0 lb/in.

K11,11 = k(1)
55 + k(2)

55 + k(3)
55 = 3(105)(0 + 0 + 0.36) = 1.08(105) lb/in.

K11,12 = K12,11 = k(1)
56 + k(2)

56 + k(3)
56 = 3(105)(0 + 0 + 0) = 0 lb/in.

K12,12 = k(1)
66 + k(2)

66 + k(3)
66 = 3(105)(0.36 + 0.36 + 0) = 2.16(105) lb/in.

Table 3.6 Element-to-Global Displacement Correspondence

Global Displacement Element 1 Element 2 Element 3

1 1 0 0
2 2 0 0
3 3 0 0
4 0 1 0
5 0 2 0
6 0 3 0
7 0 0 1
8 0 0 2
9 0 0 3

10 4 4 4
11 5 5 5
12 6 6 6
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The system of equations to be solved for the displacements of node 4 are

105


 5.76 1.44 0

1.44 1.08 0
0 0 2.16







U10

U11

U12


 =




0
−5000

0




and simultaneous solution yields

U10 � 0.01736 in.

U11 � �0.06944 in.

U12 � 0

While the complete analysis is not conducted in the context of this example, the re-
action forces, element strains, and element stresses would be determined by the same pro-
cedures followed in Section 3.7 for the two-dimensional case. It must be pointed out that
the procedures required to obtain the individual element resultants are quite readily
obtained by the matrix operations described here. Once the displacements have been cal-
culated, the remaining (so-called) secondary variables (strain, stress, axial force) are
readily computed using the matrices and displacement interpolation functions developed
in the formulation of the original displacement problem.

3.9 SUMMARY
This chapter develops the complete procedure for performing a finite element analysis of
a structure and illustrates it by several examples. Although only the simple axial element
has been used, the procedure described is common to the finite element method for all
element and analysis types, as will become clear in subsequent chapters. The direct stiff-
ness method is by far the most straightforward technique for assembling the system
matrices required for finite element analysis and is also very amenable to digital computer
programming techniques.
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PROBLEMS
3.1 In the two-member truss shown in Figure 3.2, let �1 = 45◦ , �2 = 15◦ , and

F5 = 5000 lb, F6 = 3000 lb.
a. Using only static force equilibrium equations, solve for the force in each

member as well as the reaction force components. 
b. Assuming each member has axial stiffness k = 52000 lb/in., compute the

axial deflection of each member. 
c. Using the results of part b, calculate the X and Y displacements of node 3.
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3.2 Calculate the X and Y displacements of node 3 using the finite element approach
and the data given in Problem 3.1. Also calculate the force in each element. How
do your solutions compare to the results of Problem 3.1?

3.3 Verify Equation 3.28 by direct multiplication of the matrices.
3.4 Show that the transformed stiffness matrix for the bar element as given by

Equation 3.28 is singular.
3.5 Each of the bar elements depicted in Figure P3.5 has a solid circular cross-

section with diameter d = 1.5 in. The material is a low-carbon steel having
modulus of elasticity E = 30 × 106 psi. The nodal coordinates are given
in a global (X, Y ) coordinate system (in inches). Determine the element stiffness
matrix of each element in the global system.

Figure P3.5

3.6 Repeat Problem 3.5 for the bar elements in Figure P3.6. For these elements,
d = 40 mm, E = 69 GPa, and the nodal coordinates are in meters.

Figure P3.6

(b)

2

(0, 0)

(0.2, �0.2)

1

(a)

2

(0.1, 0.1)

(0.4, 0.2)
1

(e)

(0, 0)

2
(40, �10)

1

(d)

2
(�20, 30)

(10, 10)
1

(c)

2

(0, 0)

(5, 30)

1

(b)

2

(20, 10)

(30, 15)

1

(a)

1

(0, 0)

2 (30, 30)

Y

X
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Figure P3.6 (Continued )

3.7 For each of the truss structures shown in Figure P3.7, construct an element-
to-global displacement correspondence table in the form of Table 3.1.

Figure P3.7

(b)

10

1

2

3 5
7

64

2

3

4

8

95

6

7

1

(a)

6

2 53 97 211917151311

10 14 183

1

5 7 9 11

4 81 12 16 202 4 6 8 10

12

(e)

2
(3, 4)

(0, 0)

1

(d)

2

(0, 1.2)

(�0.5, 0)

1

(c)

2

(1, 2)

(�0.3, 3)

1
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Figure P3.7 (Continued )

3.8 For each of the trusses of Figure P3.7, express the connectivity data for each
element in the form of Equation 3.39.

3.9 For each element shown in Figure P3.9, the global displacements have been
calculated as U1 = 0.05 in., U2 = 0.02 in., U3 = 0.075 in., U4 = 0.09 in. Using
the finite element equations, calculate
a. Element axial displacements at each node.
b. Element strain.
c. Element stress.
d. Element nodal forces.
Do the calculated stress values agree with � = F/A? Let A = 0.75 in.2,
E = 10 × 106 psi, L = 40 in. for each case.

(e)

4

53
1 7

62

4
1

2 53

(d)

1

2

4 8

7

9

5

6

3

14

10

12

13 15

11
17

162

3

5

6

1

4 7

8

10

11

9

(c)

12

13

10

11

1 791

2
3

7

4

6

5 8

2

3 6

5

8

4
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Figure P3.9

3.10 The plane truss shown in Figure P3.10 is subjected to a downward vertical load
at node 2. Determine via the direct stiffness method the deflection of node 2 in
the global coordinate system specified and the axial stress in each element. For
both elements, A = 0.5 in.2, E = 30 × 106 psi.

Figure P3.10

3.11 The plane truss shown in Figure P3.11 is composed of members having a square
15 mm × 15 mm cross section and modulus of elasticity E = 69 GPa.
a. Assemble the global stiffness matrix.
b. Compute the nodal displacements in the global coordinate system for the

loads shown.
c. Compute the axial stress in each element.

Figure P3.11

3

2 4

1

3 kN

5 kN

1.5 m

1.5 m

X

1500 lb

(30, �10)

(40, 0)(0, 0)
1

2

3

Y

(c)

U2

U1

U4

U3

110�

(b)

U2

U1

U4

U3

30�

(a)

U2

U1

U4

U3

45�
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3.12 Repeat Problem 3.11 assuming elements 1 and 4 are removed.
3.13 The cantilever truss in Figure P3.13 was constructed by a builder to support a

winch and cable system (not shown) to lift and lower construction materials. The
truss members are nominal 2 × 4 southern yellow pine (actual dimensions
1.75 in. × 3.5 in.; E = 2 × 106 psi). Using the direct stiffness method, calculate
a. The global displacement components of all unconstrained nodes.
b. Axial stress in each member.
c. Reaction forces at constrained nodes.
d. Check the equilibrium conditions.

Figure P3.13

3.14 Figure P3.14 shows a two-member plane truss supported by a linearly elastic
spring. The truss members are of a solid circular cross section having d = 20 mm
and E = 80 GPa. The linear spring has stiffness constant 50 N/mm. 
a. Assemble the system global stiffness matrix and calculate the global

displacements of the unconstrained node.
b. Compute the reaction forces and check the equilibrium conditions.
c. Check the energy balance. Is the strain energy in balance with the

mechanical work of the applied force?

Figure P3.14

15 kN

4 m
k

50�

3 m

Y

X
45�

30� 30�

500 lb

3

4

5
2

1

Node

1

2

3

4

5

X

0

0

96

96

192

(inches)

Y

0

96

96

151.4

96
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3.15 Repeat Problem 3.14 if the spring is removed.
3.16 Owing to a faulty support connection, node 1 in Problem 3.13 moves 0.5 in.

horizontally to the left when the load is applied. Repeat the specified
computations for this condition. Does the solution change? Why or why not?

3.17 Given the following system of algebraic equations




10 −10 0 0
−10 20 −10 0

0 −10 20 −10
0 0 −10 10







x1

x2

x3

x4




=




F1

F2

F3

F4




and the specified conditions 

x1 = 0 x3 = 1.5 F2 = 20 F4 = 35

calculate x2 and x4. Do this by interchanging rows and columns such that x1 and
x3 correspond to the first two rows and use the partitioned matrix approach of
Equation 3.45.

3.18 Given the system




50 −50 0 0
−50 100 −50 0

0 −50 75 −25
0 0 −25 25







U1

U2

U3

U4




=




30
F2

40
40




and the specified condition U2 = 0.5, use the approach specified in Problem 3.17
to solve for U1, U3, U4, and F2.

3.19 For the truss shown in Figure P3.19, solve for the global displacement
components of node 3 and the stress in each element. The elements have cross-
sectional area A = 1.0 in.2 and modulus of elasticity 15 × 106 psi.

Figure P3.19

3.20 Each bar element shown in Figure P3.20 is part of a 3-D truss. The nodal
coordinates (in inches) are specified in a global (X, Y, Z) coordinate system.
Given A = 2 in.2 and E = 30 × 106 psi, calculate the global stiffness matrix of
each element.

72 in.
3

21

4

60�

30� 60�
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Figure P3.20

3.21 Verify Equation 3.59 via direct computation of the matrix product.
3.22 Show that the axial stress in a bar element in a 3-D truss is given by

� = E ε = E

[
dN1

dx

dN2

dx

]{
u (e)

1

u (e)
2

}
= E

[
− 1

L

1

L

]
[R]

{
U (e)

}

and note that the expression is the same as for the 2-D case.
3.23 Determine the axial stress and nodal forces for each bar element shown in

Figure P3.20, given that node 1 is fixed and node 2 has global displacements
U4 = U5 = U6 = 0.06 in.

3.24 Use Equations 3.55 and 3.56 to express strain energy of a bar element in terms of
the global displacements. Apply Castigliano’s first theorem and show that the
resulting global stiffness matrix is identical to that given by Equation 3.58.

3.25 Repeat Problem 3.24 using the principle of minimum potential energy.
3.26 Assemble the global stiffness matrix of the 3-D truss shown in Figure P3.26 and

compute the displacement components of node 4. Also, compute the stress in
each element.

Figure P3.26 Coordinates given in inches. For each
element E = 10 × 106 psi, A = 1.5 in.2.
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