The one-dimensional, axial load-only elements discussed in earlier chapters are useful for analyzing many simple structures. However, they cannot transmit bending effects, which limits their application in structures with welded or riveted joints.
Elementary beam theory is applied here to develop a flexure (beam) element capable of properly representing transverse bending effects.
Consider a simply supported beam subjected to a distributed transverse load $q(x)$, expressed in force per unit length.
Coordinate system:
Assumptions:
Figure 4.1: Simply supported beam under arbitrary distributed load (a) Load, (b) deflected shape, (c) sign convention for shear force and bending moment)
Figure 4.2: Beam cross sections: (a) and (b) symmetric sections, (c) asymmetric L-shaped section
Consider a differential fiber of a beam after bending, as shown in Figure 4.1b of Hutton. Let the neutral surface be located at $y=0$, the distance from the center of curvature be $\rho$, and the angular increment along the arc be $d\theta$.
Length of a fiber at distance $y$ from the neutral surface:
\[ds = (\rho - y) d\theta \tag{4.1}\]Bending strain along the fiber:
\[\varepsilon_x = \frac{ds - dx}{dx} = \frac{(\rho - y)d\theta - \rho d\theta}{\rho d\theta} = -\frac{y}{\rho} \tag{4.2}\]From basic calculus, the radius of curvature of a planar curve $v=v(x)$ is:
\[\frac{1}{\rho} = \frac{d^2 v/dx^2}{\left(1 + (dv/dx)^2\right)^{3/2}} \tag{4.3}\]For small deflections (slopes $dv/dx \ll 1$):
\[\frac{1}{\rho} \approx \frac{d^2 v}{dx^2} \tag{4.4}\]Using this approximation, the normal strain along the longitudinal axis is:
\[\varepsilon_x = -y \frac{d^2 v}{dx^2} \tag{4.5}\]The corresponding normal stress is:
\[\sigma_x = E \varepsilon_x = -E y \frac{d^2 v}{dx^2} \tag{4.6}\]Since there is no net axial force on the cross-section:
\[F_x = \int_A \sigma_x \, dA = - \int_A E y \frac{d^2 v}{dx^2} \, dA = 0 \tag{4.7}\]This confirms that the neutral surface passes through the centroid:
\[\int_A y \, dA = 0 \tag{4.8}\]The internal bending moment at a cross-section:
\[M(x) = - \int_A y \sigma_x \, dA = E \int_A y^2 \frac{d^2 v}{dx^2} \, dA \tag{4.9}\]Using the moment of inertia:
\[I_z = \int_A y^2 dA\]The bending moment becomes:
\[M(x) = E I_z \frac{d^2 v}{dx^2} \tag{4.10}\]The normal stress in terms of bending moment:
\[\sigma_x = -\frac{M(x) y}{I_z} = -y E \frac{d^2 v}{dx^2} \tag{4.11}\]Assumptions:
Field variable: transverse displacement $v(x)$ of the neutral surface.
Boundary conditions:
\[v(x_1) = v_1, \quad v(x_2) = v_2 \tag{4.12}\] \[\frac{dv}{dx}\Big|_{x=x_1} = \theta_1, \quad \frac{dv}{dx}\Big|_{x=x_2} = \theta_2 \tag{4.13}\]Or equivalently:
\[v(0) = v_1, \quad v(L) = v_2 \tag{4.14}\] \[\frac{dv}{dx}(0) = \theta_1, \quad \frac{dv}{dx}(L) = \theta_2 \tag{4.15, 4.16}\]Figure: Beam element nodal variables and Beam element nodal displacements shown in a positive sense
Assume a cubic polynomial form for transverse displacement:
\[v(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \tag{4.17}\]From finite element formulation of the beam (flexure element), we apply the boundary conditions at nodes:
At $x = 0$, displacement: \(v(x=0) = v_1 = a_0 \tag{4.18}\)
At $x = L$, displacement: \(v(x=L) = v_2 = a_0 + a_1 L + a_2 L^2 + a_3 L^3 \tag{4.19}\)
At $x = 0$, slope: \(\left.\frac{dv}{dx}\right|_{x=0} = \theta_1 = a_1 \tag{4.20}\)
At $x = L$, slope: \(\left.\frac{dv}{dx}\right|_{x=L} = \theta_2 = a_1 + 2a_2 L + 3a_3 L^2 \tag{4.21}\)
Figure 4.5: Bending moment diagram for a flexure element
Equations (4.18)–(4.21) are solved simultaneously to obtain:
\[a_0 = v_1 \tag{4.22}\] \[a_1 = \theta_1 \tag{4.23}\] \[a_2 = \frac{3}{L^2}(v_2 - v_1) - \frac{1}{L}(2\theta_1 + \theta_2) \tag{4.24}\] \[a_3 = \frac{2}{L^3}(v_1 - v_2) + \frac{1}{L^2}(\theta_1 + \theta_2) \tag{4.25}\]Substituting into $v(x)$:
\[v(x) = \left(1 - 3\frac{x^2}{L^2} + 2 \frac{x^3}{L^3}\right)v_1 + \left(x - 2\frac{x^2}{L} + \frac{x^3}{L^2}\right)\theta_1 + \left(3\frac{x^2}{L^2} - 2\frac{x^3}{L^3}\right)v_2 + \left(-\frac{x^2}{L} + \frac{x^3}{L^2}\right)\theta_2 \tag{4.26}\]Introduce $\xi = \dfrac{x}{L}$:
\[v(x) = (1 - 3\xi^2 + 2\xi^3)v_1 + L(\xi - 2\xi^2 + \xi^3)\theta_1 + (3\xi^2 - 2\xi^3)v_2 + L(-\xi^2 + \xi^3)\theta_2 \tag{4.29}\]where 0 ≤ ξ ≤ 1. This form proves more amenable to the integrations required to complete development of the element equations in the next section.
Using Equation (4.11) and interpolation:
\[\sigma_x(x,y) = -y E \frac{d^2 [N]}{dx^2} \{\delta\} \tag{4.30}\]Maximum stress occurs at outer fibers $y_{\max}$:
\[\sigma_x(x) = y_{\max} E \frac{d^2 [N]}{dx^2} \{\delta\} \tag{4.31}\]Expanded form:
\[\sigma_x(x) = y_{\max} E \Bigg[ \left(\frac{12x}{L^3} - \frac{6}{L^2}\right) v_1 + \left(\frac{6x}{L^2} - \frac{4}{L}\right) \theta_1 + \left(-\frac{12x}{L^3} + \frac{6}{L^2}\right) v_2 + \left(\frac{6x}{L^2} - \frac{2}{L}\right) \theta_2 \Bigg] \tag{4.32}\]Nodal stresses:
\[\sigma_x(x=0) = y_{\max} E \left[ \frac{6}{L^2}(v_2 - v_1) - \frac{2}{L}(2\theta_1 + \theta_2) \right] \tag{4.33}\] \[\sigma_x(x=L) = y_{\max} E \left[ \frac{6}{L^2}(v_1 - v_2) + \frac{2}{L}(2\theta_2 + \theta_1) \right] \tag{4.34}\]Having developed the flexure element displacement approximation, we now examine the stiffness characteristics of the element, which relate nodal displacements to nodal forces.
The total strain energy stored in the element under bending is expressed as:
\[U_e = \frac{1}{2} \int_V \sigma_x \varepsilon_x \, dV \tag{4.35}\]where $V$ is the total volume of the element.
Substituting the expressions for stress and strain from Equations 4.5 and 4.6:
\[\varepsilon_x = -y \frac{d^2 v}{dx^2}, \quad \sigma_x = E \varepsilon_x = -E y \frac{d^2 v}{dx^2} \tag{4.36}\]yields:
\[U_e = \frac{E}{2} \int_V y^2 \left(\frac{d^2 v}{dx^2}\right)^2 dV\]For a constant cross-section, the integral can be separated:
\[U_e = \frac{E}{2} \int_0^L \left(\frac{d^2 v}{dx^2}\right)^2 \left( \int_A y^2 \, dA \right) dx \tag{4.37}\]Recognizing the area integral as the moment of inertia $I_z$:
\[U_e = \frac{E I_z}{2} \int_0^L \left(\frac{d^2 v}{dx^2}\right)^2 dx \tag{4.38}\]Using the finite element approximation (Equation 4.27):
\[v(x) = N_1(x)v_1 + N_2(x)\theta_1 + N_3(x)v_2 + N_4(x)\theta_2\]the strain energy becomes:
\[U_e = \frac{E I_z}{2} \int_0^L \left( \frac{d^2 N_1}{dx^2} v_1 + \frac{d^2 N_2}{dx^2} \theta_1 + \frac{d^2 N_3}{dx^2} v_2 + \frac{d^2 N_4}{dx^2} \theta_2 \right)^2 dx \tag{4.39}\]This is an approximation, since the discretized displacement is generally not the exact solution.
By differentiating (U_e) with respect to nodal displacements, we obtain the nodal forces and moments.
For node 1 displacement (v_1):
\[F_1 = \frac{\partial U_e}{\partial v_1} = E I_z \int_0^L \left( \frac{d^2 N_1}{dx^2} v_1 + \frac{d^2 N_2}{dx^2} \theta_1 + \frac{d^2 N_3}{dx^2} v_2 + \frac{d^2 N_4}{dx^2} \theta_2 \right) \frac{d^2 N_1}{dx^2} dx \tag{4.40}\]For node 1 rotation (\theta_1):
\[M_1 = \frac{\partial U_e}{\partial \theta_1} = E I_z \int_0^L \left( \frac{d^2 N_1}{dx^2} v_1 + \frac{d^2 N_2}{dx^2} \theta_1 + \frac{d^2 N_3}{dx^2} v_2 + \frac{d^2 N_4}{dx^2} \theta_2 \right) \frac{d^2 N_2}{dx^2} dx \tag{4.41}\]For node 2 displacement (v_2):
\[F_2 = \frac{\partial U_e}{\partial v_2} = E I_z \int_0^L \left( \frac{d^2 N_1}{dx^2} v_1 + \frac{d^2 N_2}{dx^2} \theta_1 + \frac{d^2 N_3}{dx^2} v_2 + \frac{d^2 N_4}{dx^2} \theta_2 \right) \frac{d^2 N_3}{dx^2} dx \tag{4.42}\]For node 2 rotation (\theta_2):
\[M_2 = \frac{\partial U_e}{\partial \theta_2} = E I_z \int_0^L \left( \frac{d^2 N_1}{dx^2} v_1 + \frac{d^2 N_2}{dx^2} \theta_1 + \frac{d^2 N_3}{dx^2} v_2 + \frac{d^2 N_4}{dx^2} \theta_2 \right) \frac{d^2 N_4}{dx^2} dx \tag{4.43}\]The nodal forces and moments can be written in matrix form:
\[\begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} \\ k_{21} & k_{22} & k_{23} & k_{24} \\ k_{31} & k_{32} & k_{33} & k_{34} \\ k_{41} & k_{42} & k_{43} & k_{44} \end{bmatrix} \begin{bmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} F_1 \\ M_1 \\ F_2 \\ M_2 \end{bmatrix} \tag{4.44}\]with the stiffness coefficients:
\[k_{mn} = k_{nm} = E I_z \int_0^L \frac{d^2 N_m}{dx^2} \frac{d^2 N_n}{dx^2} dx, \quad m,n=1,4 \tag{4.45}\]Introduce the dimensionless variable:
\[\xi = \frac{x}{L} \quad \Rightarrow \quad 0 \leq \xi \leq 1 \tag{4.46}\]Differentials transform as:
\[dx = L \, d\xi, \qquad \frac{d}{dx} = \frac{1}{L} \frac{d}{d\xi}, \quad \frac{d^2}{dx^2} = \frac{1}{L^2} \frac{d^2}{d\xi^2} \tag{4.47}\]The element stiffness coefficient in terms of (x) is:
\[k_{mn} = k_{nm} = E I_z \int_0^L \frac{d^2 N_m}{dx^2} \frac{d^2 N_n}{dx^2} dx\]Substitute the dimensionless derivatives from Eq. 4.47:
\[k_{mn} = E I_z \int_0^L \left( \frac{1}{L^2} \frac{d^2 N_m}{d\xi^2} \right) \left( \frac{1}{L^2} \frac{d^2 N_n}{d\xi^2} \right) dx\] \[k_{mn} = E I_z \int_0^L \frac{1}{L^4} \frac{d^2 N_m}{d\xi^2} \frac{d^2 N_n}{d\xi^2} dx\] \[k_{mn} = E I_z \int_0^1 \frac{1}{L^4} \frac{d^2 N_m}{d\xi^2} \frac{d^2 N_n}{d\xi^2} (L \, d\xi)\] \[k_{mn} = \frac{E I_z}{L^3} \int_0^1 \frac{d^2 N_m}{d\xi^2} \frac{d^2 N_n}{d\xi^2} d\xi \tag{4.48}\]Direct integration yields:
\[\begin{aligned} k_{11} &= 12 \frac{E I_z}{L^3}, & k_{12} &= 6 \frac{E I_z}{L^2}, & k_{13} &= -12 \frac{E I_z}{L^3}, & k_{14} &= 6 \frac{E I_z}{L^2}, \\ k_{22} &= 4 \frac{E I_z}{L}, & k_{23} &= -6 \frac{E I_z}{L^2}, & k_{24} &= 2 \frac{E I_z}{L}, \\ k_{33} &= 12 \frac{E I_z}{L^3}, & k_{34} &= -6 \frac{E I_z}{L^2}, & k_{44} &= 4 \frac{E I_z}{L} \end{aligned}\]The matrix is symmetric: $k_{mn} = k_{nm}$.
Remarks:
In Equations 4.40–4.43, the element forces and moments were treated as per Castigliano’s first theorem, acting in the direction of the associated nodal displacements. These directions are consistent with the assumed positive directions of the nodal displacements.
However, the usual beam theory sign conventions for shear force and bending moment differ, as shown in Figures 4.6a and 4.6b. This can be expressed as:
\[\begin{bmatrix} F_1 \\ M_1 \\ F_2 \\ M_2 \end{bmatrix}_{\text{FE}} \quad \Rightarrow \quad \begin{bmatrix} - V_1 \\ - M_1 \\ V_2 \\ M_2 \end{bmatrix}_{\text{beam theory}} \tag{4.50}\]Here:
If two flexure elements share a common node, the internal shear forces are equal and opposite, unless an external force is applied at that node. In such a case, the sum of the internal shear forces equals the applied load.
Similarly, for bending moments:
These observations are illustrated in Figure 4.6c, which shows a simply supported beam with:
The shear force diagram exhibits a jump discontinuity at the point of application of the concentrated force. The magnitude of this jump equals the magnitude of the applied force.
Similarly, the bending moment diagram shows a jump discontinuity equal to the magnitude of the applied bending moment.
If the beam is divided into two finite elements with a connecting node at the midpoint:
This ensures that the finite element model accurately incorporates external nodal loads while maintaining equilibrium at shared nodes.
Problem: A statically indeterminate simply supported beam as shown in figure 4.7a is subjected to a transverse load applied at midspan. Using two flexure elements, obtain the solution for the midspan deflection.
Solution:
Since flexure elements require loading only at nodes, the beam is divided into two elements, each of length $L/2$, as shown in Figure 4.7b.
As derived earlier,
Therefore, for the given problem, the individual element stiffness matrices are:
\[[k^{(1)}] = [k^{(2)}] = \frac{E I_z}{(L/2)^3} \begin{bmatrix} 12 & 6(L/2) & -12 & 6(L/2) \\ 6(L/2) & 4(L/2)^2 & -6(L/2) & 2(L/2)^2 \\ -12 & -6(L/2) & 12 & -6(L/2) \\ 6(L/2) & 2(L/2)^2 & -6(L/2) & 4(L/2)^2 \end{bmatrix}\]Simplifying:
\[k^{(1)} = k^{(2)} = \frac{8 E I_z}{L^3} \begin{bmatrix} 12 & 3L & -12 & 3L \\ 3L & L^2 & -3L & L^2/2 \\ -12 & -3L & 12 & -3L \\ 3L & L^2/2 & -3L & L^2 \end{bmatrix}\]Note: The length of each element is $L/2$.
Boundary conditions:
\[v_1 = \theta_1 = v_3 = 0\]Element-to-system displacement correspondence is given in Table 4.1:
Global Displacement | Element 1 | Element 2 |
---|---|---|
1 | 1 | 0 |
2 | 2 | 0 |
3 | 3 | 1 |
4 | 4 | 2 |
5 | 0 | 3 |
6 | 0 | 4 |
Using the displacement correspondence and symmetry, the global stiffness coefficients are:
\[\begin{aligned} K_{11} &= k^{(1)}_{11} = \frac{96 E I_z}{L^3}, & K_{12} &= k^{(1)}_{12} = \frac{24 E I_z}{L^2}, & K_{13} &= k^{(1)}_{13} = -\frac{96 E I_z}{L^3}, & K_{14} &= k^{(1)}_{14} = \frac{24 E I_z}{L^2} \\ K_{22} &= k^{(1)}_{22} = \frac{8 E I_z}{L}, & K_{23} &= k^{(1)}_{23} = -\frac{24 E I_z}{L^2}, & K_{24} &= k^{(1)}_{24} = \frac{4 E I_z}{L} \\ K_{33} &= k^{(1)}_{33} + k^{(2)}_{11} = \frac{192 E I_z}{L^3}, & K_{34} &= k^{(1)}_{34} + k^{(2)}_{12} = 0, & K_{35} &= k^{(2)}_{13} = -\frac{96 E I_z}{L^3}, & K_{36} = k^{(2)}_{14} = \frac{24 E I_z}{L^2} \\ K_{44} &= k^{(1)}_{44} + k^{(2)}_{22} = \frac{16 E I_z}{L}, & K_{45} &= k^{(2)}_{23} = -\frac{24 E I_z}{L^2}, & K_{46} = k^{(2)}_{24} = \frac{4 E I_z}{L} \\ K_{55} &= k^{(2)}_{33} = \frac{96 E I_z}{L^3}, & K_{56} &= k^{(2)}_{34} = -\frac{24 E I_z}{L^2}, & K_{66} = k^{(2)}_{44} = \frac{8 E I_z}{L} \end{aligned}\]Thus, the global system is written as:
\[[K]\{U\} = \{F\}\] \[\frac{E I_z}{L^3} \begin{bmatrix} 96 & 24L & -96 & 24L & 0 & 0 \\ 24L & 8L^2 & -24L & 4L^2 & 0 & 0 \\ -96 & -24L & 192 & 0 & -96 & 24L \\ 24L & 4L^2 & 0 & 16L^2 & -24L & 4L^2 \\ 0 & 0 & -96 & -24L & 96 & 24L \\ 0 & 0 & 24L & 4L^2 & 24L & 8L^2 \end{bmatrix} \begin{Bmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \\ v_3 \\ \theta_3 \end{Bmatrix} = \begin{Bmatrix} F_1 \\ M_1 \\ F_2 \\ M_2 \\ F_3 \\ M_3 \end{Bmatrix}\]Using $v_1 = \theta_1 = v_3 = 0$, the reduced system becomes:
\[\frac{E I_z}{L^3} \begin{bmatrix} 192 & 0 & 24L \\ 0 & 16 L^2 & 4L^2 \\ 24L & 4L^2 & 8 L^2 \end{bmatrix} \begin{Bmatrix} v_2 \\ \theta_2 \\ \theta_3 \end{Bmatrix} = \begin{Bmatrix} - P \\ 0 \\ 0 \end{Bmatrix}\]The deformed shape of the beam is shown in Figure 4.7c, superimposed with the undeformed shape.
Substituting nodal displacements into constraint equations:
\[\begin{aligned} F_1 &= \frac{E I_z}{L^3}(-96 v_2 + 24 L \theta_2) = \frac{11 P}{16} \\ F_3 &= \frac{E I_z}{L^3}(-96 v_2 - 24 L \theta_2 - 24 L \theta_3) = \frac{5 P}{16} \\ M_1 &= \frac{E I_z}{L^3}(-24 L v_2 + 4 L^2 \theta_2) = \frac{3 P L}{16} \end{aligned}\]Sum of vertical forces:
\[F_y = \frac{11 P}{16} - P + \frac{5 P}{16} = 0\]Sum of moments about node 1:
\[M = \frac{3 P L}{16} - \frac{P L}{2} + \frac{5 P}{16} L = 0\]Thus, the finite element solution satisfies global equilibrium.